
www.manaraa.com

I

Investigating Distributed Database Deadlock
Based on Attribute Level

Prepared by

Khaled Saleh Salah Maabreh

Supervisor
Prof. Dr. Ala'a Al Hamami

A Dissertation Submitted in Partial
Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Computer
Science.

Graduate College of Computer Studies
Amman Arab University for Graduate

Studies

July, 2008

www.manaraa.com

II

AUTHORIZATION

I, Khaled S. Maabreh, authorize Amman Arab University for

Graduate Studies to reproduce this dissertation in whole or part

for purposes of research.

Name: Khaled Saleh Salah Maabreh

Signature:

Date: 1/9/2008

www.manaraa.com

III

DISSERTATION COMMITTEE

This dissertation, with the title "Investigating Distributed Database

Deadlock Based on Attribute Level", was defended and approved

on: 10/9/2008.

Committee Members Title Signature

Prof. Dr. Fawaz

AlZaghoul

Prof. Dr. Alaa

Alhammami

Ass. Prof. Dr. Jalal

Atoum

Ass. Prof. Dr. Sa'ad Al-

A'ani

Chair

Member and

Supervisor

Member

Member

www.manaraa.com

IV

ACKNOWLEDGMENT

"All praises and thanks to ALLAH"

 I would like to thank my supervisor Prof. Dr. Alaa Al-Hamami who

provided me with full support, encouragement, and guidance in order

to get this dissertation ready. Without his help and support, this work

would not have been possible. He was always available any time I

needed help.

My sincere thanks go to the Dean of Graduate College of

Computer Studies, all of the lecturers, administration, and the staff of

Amman Arab University for Graduate Studies.

I also thank Prof. Dr. Mahmoud El-Najar and Dr. Khaled Al-

Akhras for their help in refining this dissertation, and thanks to Eng.

Abdullah Odat for his consultation to prepare and implement the

simulation project.

www.manaraa.com

V

DEDICATION

I dedicate this work to:

my father, mother and brother

my wife and our daughters Rafeef, Retaj, Jana and Yagoot and

Al Mujahedeen for the sake of ALLAH

.

www.manaraa.com

VI

Table of Contents

AUTHORIZATION ... II

DISSERTATION COMMITTEE... III

ACKNOWLEDGMENT ... IV

DEDICATION ... V

.Table of Contents .. V

List of Tables .. VIII

List of Figures .. X

Abbreviations .. XV

Abstract ... XVII

Arabic Summary ... XIX

CHAPTER ONE INTRODUCTION .. 1

1.1. Overview ... 1

1.2. Distributed Database .. 4

1.3.The Problem Statement ... 5

1.4. Dissertation Questions .. 7

1.5. Dissertation Methodology.. 8

1.6 .Rationale of the Study ... 8

1.7. Goals of this Dissertation .. 14

1.8. Dissertation Contribution ... 14

1.9 Dissertation Structure .. 16

1.10 Conclusion ... 18

CHAPTER TWO LITERATURE REVIEW .. 19

2.1 Introduction .. 19

2.2 Handling Concurrency Control in a Database by Locking Techniques 20

2.3 Review of Locking in Different Database Systems ... 28

2.4 Review of Deadlock Handling in Distributed Database Systems 29

2.5 Handling Deadlocks in Some Well Known Databases .. 34

2.6 Locking Performance in a Database .. 36

2.7.Conclusion ... 41

CHAPTER THREE THE PROPOSED METHODOLOGY .. 43

3.1 Introduction .. 44

3.2 Hierarchy Tree ... 46

www.manaraa.com

VII

3.3 Database Lock Manager .. 49

3.4 Proof of Concept by Simulation .. 51

3.4.1 Building the Simulation ... 52

3.5 Deadlock Detection Approach .. 56

3.6 The Enhanced Algorithm Description for Locking Attributes 58

3.7 Conclusion ... 60

CHAPTER FOUR CENTRALIZED DATABASE RESULTS ... 61

4.1 Locking Performance ... 61

4.2 Simulation Runs at Row Level Locking .. 62

4.2.1 Performance Analysis ... 71

4.3 Simulation Runs at Field Level Locking.. 78

4.3.1 Performance Analysis ... 88

4.4 Comparing the Two Alternatives .. 96

4.5 Conclusion ... 99

CHAPTER FIVE DISTRIBUTED DATABASE RESULTS ... 101

5.1 Distributed Database Population .. 102

5.2 System Behavior at Row Level Locking ... 106

5.3 System Behavior at Field Level Locking ... 116

5.4 Comparing the Two Alternatives .. 124

5.5 The Effects of System Parameters ... 127

5.5.1 Operation mode .. 127

5.5.2 Number of sites ... 129

5.5.3 Degree of replication ... 131

5.6 Conclusion ... 131

CHAPTER SIX CONCLUSIONS AND RECOMMENDATIONS 133

6.1 Introduction .. 133

6.2 Field Level Locking on Centralized Database .. 134

6.3 Field Level Locking on Distributed Database ... 135

6.4 Future Works ... 136

REFERENCES .. 138

Appendices ... 144

www.manaraa.com

VIII

List of Tables

TABLE
1.1 :

Compatibility matrix for granularity hierarchy
………………………………

9

TABLE
2.1 :

Gray et al, Compatibility matrix
……………………………………………….

19

TABLE
3.1 :

Simulation parameters

………………………………………………….............

41

TABLE
4.1 :

Results after simulation run at row-level-locking
……………………………..

48

TABLE
4.2 :

Results of 30 runs of simulation
………………………………………………..

55

TABLE
4.3 :

Data Contention workload at Database Size
51,152 …………………………..

58

TABLE
4.4 :

Results after simulation run at field-level-
locking …………………………….

60

TABLE
4.5 :

Building information table
……………………………………………………...

63

TABLE
4.6 :

Material schedule table
…………………………………………………………

63

TABLE
4.7 :

Results of 30 runs of simulation at field level
locking ………………………...

67

TABLE
4.8 :

Data Contention workload at Database Size

248,256 …………………………

70

TABLE
4.9 :

Row level locking versus field level locking
performance …………………….

72

TABLE
5.1 :

Simulation parameters for distributed database
……………………………...

79

TABLE
5.2 :

Distributing database objects into 15 tables
…………………………………...

79

TABLE
5.3 :

Distributing of 15 tables across three sites
…………………………………….

80

TABLE
5.4 :

Results of 20 runs of simulation at row level
locking ……………….………...

81

TABLE
5.5 :

Sample results of 170 transactions at row-level-
locking ……………………...

84

TABLE
5.6 :

Execution behavior of deadlocked and blocked
transactions at row level …..

86

www.manaraa.com

IX

TABLE
5.7 :

Results of 20 runs of simulation at field level
locking …...………….………...

87

TABLE
5.8 :

Sample results of 170 transactions at field-level-
locking ……………………..

90

TABLE
5.9 :

Execution behavior of deadlocked and blocked
transactions at field level ….

91

TABLE
5.10:

Row level locking versus field level locking
performance …………………….

92

TABLE
5.11:

Transaction classified according to the
operation mode ……………………...

95

TABLE
5.12:

Transaction classified according to the number
of sites used ………………...

96

www.manaraa.com

X

List of Figures

FIGUR
E 1.1 :

Graphical representation for deadlock 4

FIGUR
E 1.2 :

Granularity hierarchy
………………………………………………………….

8

FIGUR
E 1.2 :

Proposed granularity hierarchy
……………………………………………….

1
2

FIGUR
E 3.1 :

Overview of the proposed system
……………………………………………..

3
4

FIGUR
E 3.2 :

Database hierarchies at fields level locking
…………………………………..

3
6

FIGUR
E 3.3 :

Data structure of lock manager

……………………………………………….

3
8

FIGUR
E 3.4 :

Simulation model overview
……………………………………………………

4
0

FIGUR
E 4.1 :

Execution behavior of transaction number 26 at
row level locking ………...

5
1

FIGUR
E 4.2 :

Execution behavior of transaction number 38 at
row level locking ………...

5
2

FIGUR
E 4.3 :

Execution behavior of transaction number 35 at
row level locking ………...

5
2

FIGUR
E 4.4 :

Execution behavior of transaction number 81 at
row level locking ………...

5
3

www.manaraa.com

XI

FIGURE
4.5 :

Execution behavior of transaction number 79 at
row level locking ………...

53

FIGURE
4.6 :

System Throughput at row level locking

……………………………………...

57

FIGURE
4.7 :

System performance at row level locking

…………………………………….

57

FIGURE
4.8 :

System locking overhead at row level locking

………………………………..

59

FIGURE
4.9 :

Execution behavior of transaction number 26 at

field level locking ………..

64

FIGURE
4.10 :

Execution behavior of transaction number 38 at

field level locking ………..

65

FIGURE
4.11 :

Execution behavior of transaction number 35 at

field level locking ………..

65

FIGURE
4.12 :

Execution behavior of transaction number 81 at

field level locking ………..

66

FIGURE
4.13 :

Execution behavior of transaction number 79 at

field level locking ………..

66

www.manaraa.com

XII

FIGURE
4.14 :

System throughput at field level locking

……………………………………...

69

FIGURE
4.15 :

System performance at field level locking

…………………………………….

69

FIGURE
4.16 :

System locking overhead at field level locking

……………………………….

70

FIGURE
4.17 :

Throughput for the two alternatives

………………………………………….

73

FIGURE
4.18 :

Mean service time for the two alternatives

…………………………………...

73

FIGURE
4.19 :

Mean waiting time for the two alternatives

…………………………………..

73

FIGURE
4.20 :

Locking overhead for the two alternatives

…………………………………...

74

FIGURE
5.1 :

Distributed database architecture for three sites

…………………………….

78

FIGURE
5.2 :

System Throughput at row level locking

……………………………………...

82

www.manaraa.com

XIII

FIGU
RE 5.3
:

Mean service time at row level locking

………………………………………..

8
2

FIGU
RE 5.4
:

Mean waiting time at row level locking

……………………………………….

8
3

FIGU
RE 5.5
:

System locking overhead at row level locking

………………………………..

8
3

FIGU
RE 5.6
:

Part of dependency graph for deadlocked and

blocked transactions at row level

………………………………………………………………

……………...

8
6

FIGU
RE 5.7
:

System throughput at field level locking

……………………………………...

8
8

FIGU
RE 5.8
:

Mean service time at field level locking

……………………………………….

8
8

FIGU
RE 5.9
:

Mean waiting time at field level locking

………………………………………

8
9

FIGU
RE
5.10 :

System locking overhead at row level locking

………………………………..

8
9

www.manaraa.com

XIV

FIGURE
5.11 :

Part of dependency graph for transactions

2,18,25,33,38 at field level ……..

92

FIGURE
5.12:

Throughput for the two alternatives

………………………………………….

93

FIGURE
5.13:

Mean service time for the two alternatives

…………………………………...

93

FIGURE
5.14:

Mean waiting time for the two alternatives

…………………………………..

94

FIGURE
5.15:

Locking overhead for the two alternatives

…………………………………...

94

FIGURE
5.16:

The effects of operation mode

…………………………………………………

96

FIGURE
5.17:

The effects of the number of sites used

………………………………………..

97

www.manaraa.com

XV

Abbreviations

CPU Central Processing Unit

D Database size (lockable units)

DB Database

DBMS Database Management System

DC Data Contention

DDBMS Distributed Data Base Management System

DML Data Manipulation Language

F File (or database table)

FCFS First Come First Served

ID Identification

IS Intention Shared

IX Intention Exclusive

K Number of locks

LCB Lock Control Block

Ms Millisecond

N Number of transitions (or Number of users)

NL NiL (No locks)

S Shared

SIX Shared with Intent Exclusive

www.manaraa.com

XVI

SQL Structured Query Language

T Transaction

X Exclusive

www.manaraa.com

XVII

Abstract

(PHD)

Investigating Distributed Database Deadlock Based on
Attribute Level

Prepared by

Khaled Saleh Salah Maabreh

Supervisor
Prof. Dr. Ala'a Al Hamami

The use of a database is increasing day by day; it has become

the core of most applications. Also the number of users is growing in

an unexpected way, and the information must be available in an

efficient and reliable way to satisfy user requirements and to cover

the increasing needs. Because the database has the ability to work in

a multi user environment, there must be a technique to preserve the

data contained in the databases. Locking database items are the

most popular. Distributed databases may contain huge data, and

several hundreds or even several thousands users over the

connected sites.

 This research suggests a method to increase the availability of

data, by reducing the size of lockable entities. This can be done by

increasing the granularity hierarchy tree one more level down at the

attributes to allow several transactions to access the same row

www.manaraa.com

XVIII

simultaneously. A simulation program was implemented to show and

compare the system behavior at the field level locking approach. The

experimental results proved that using attribute level locking will

decrease the competition for acquiring the data and increases the

concurrency control for the Database (Centralized or Distributed).

Also the suggested level increases the database performance and

decreases deadlock occurrences.

The discussion presented shows that the system at field level

locking behaves much better than at row level locking in both

environments (centralized and distributed), because multiple

transactions can process the same database row simultaneously,

which decreases the mean service time as well as the mean waiting

time. At the same time, more transaction executes on field level than

row level locking before the systems begins thrashing, which means

that the field level locking works better on a heavy work load than

systems at row level locking.

Key words: Centralized Database, Distributed Database, Locking,

Attribute Level, Database Deadlocks, Concurrency Control, and

Performance.

www.manaraa.com

XIX

Arabic Summary

www.manaraa.com

1

CHAPTER ONE
INTRODUCTION

1.1. Overview

Database is a collection of data that contains information

relevant to an enterprise [34]. The use of a database is increasing day

by day; it has become the core of most applications, including web

based applications. Also the number of users is growing in an

unexpected way due to the need for information in many situations

like decision making or even in daily routine applications. Information

must be available in an efficient and reliable way to satisfy user

requirements and to cover the increasing needs.

Database is distinguished from the file system by the ability to

work in a multi user environment. This usage needs specific

techniques to protect the consistency and integrity of data contained

in the database. The most popular technique used to attain the data

protection (serializability) is locking (i.e. each transaction reserves

access to the data it uses). Locking is done by following some rules

(locking protocol) [21] and according to compatibility function among

different lock types (read or write), where a read is not compatible

with a write.

www.manaraa.com

2

Locking protocols are then a set of rules defining allowable

sequences of lock and unlock operations which may appear in a

transaction [21]. The purpose of these rules is to guarantee that any

possible concurrent execution of a set of transactions is the only rule

that has an effect on database equivalent to that of some serial

execution of the transactions in the set. In such case, a protocol is

said to guarantee serializability and any serial execution of a set of

such transactions is said to be serializable.

When a transaction sets a lock, it delays other transactions that

need to set a conflicting lock, the more transactions that are running

concurrently, the more delays will happen (i.e. locking affects

performance).

The level of locking is a main factor that affects such delays, by

assuming that a database is represented as a multiple granularity

hierarchy tree [1, 5, 11, 31, 33], locking could exists at the database

level which satisfies the high security and integrity but it will be so

slow and similar to the file management system, which means one

user uses a database at a time (more delays). Also it is possible to

use it at the table level which gives the chance for more users to use

the database (less delay), but at the same time there will be a lot of

www.manaraa.com

3

 unused data. It is possible to use locking at the row level (the

smallest granule that can be locked), which gives more chance for

more users to access the data (increasing the concurrency).

By using the locking techniques to ensure database integrity

and consistency, they produce a problem related to locking database

items, which is the deadlock problem. Deadlock is defined by [33, 43]

as a situation, where two or more competing transactions are waiting

for each other to finish, and thus neither ever does. Also defined by

[31] as a situation that occurs when two or more transactions wait for

each other to unlock data. In a distributed database, deadlock

becomes more complex and needs much time to resolve than in

centralized database. Figure 1.1 shows graphical representation for

deadlock situation [28, 33].

Figure 1.1 (Graphical representation for deadlock)

T1

a

T2 T1 T2

b b a

Site 1 Site 2

Centralized Distributed

www.manaraa.com

4

1.2. Distributed Database

A distributed database system is consisted of a number of sites

connected via a computer network [28], which has a high number of

resources, besides, the number of users to these items or resources

is higher than centralized. A distributed transaction is a set of

operations, in which two or more network hosts are involved. Usually,

hosts provide transactional resources, while the transaction manager

is responsible for creating and managing a global transaction that

accomplishes all operations against such resources [44, 45]. Each

host or computer has a local transaction manager responsible for

interacting with other transaction managers via either a superior or

subordinate relationship, in case of a transaction does work at

multiple computers [24].

 In a distributed database, a transaction consists of several

participants or agents to execute over all sites; all participants must

guarantee that any change to data will be permanent in order to

commit the transaction, if any of the participants fails to make this

guarantee, the entire transaction fails and aborts. There are many

approaches according to where the lock management is performed,

one of them is the centralized locking, where there is one site

www.manaraa.com

5

 responsible for granting locks because it is the only site that has a

lock manager, in this case, the central site has a lock table for the

entire database. Communications among other sites are performed

via transaction manager at the site where the transaction is initiated,

the lock manager at the central site, and the data processor at other

sites participating to carry out the operations [4, 28].

When a transaction needs to lock a data item, it sends a request

to the central site that determines if the lock can be granted, if so, it

sends a message to the originating site, else it will wait. In case of

read operations, the transaction performs its action from any site that

has a copy of the required data item, whereas in a write case, all sites

owning a copy must participate in this action [33]. The simplicity in

implementation and simplicity in deadlock handling are two factors to

be considered in choosing the central locking approach, because we

don’t have real data and not concerned with designing real distributed

database system; rather we are concerned with measuring our

approach (attribute level locking) to system performance.

1.3.The Problem Statement

The problem is due to the incremental number of users of the

database, and the competition for acquiring a data item becomes very

www.manaraa.com

6

high. The multi usage of database resources after locking them

enables the contention to take place indicating the deadlock problem.

Specifically, a Distributed Database Management System (DDBMS)

gives higher degree of multi possibilities of using available resources

and thus yielding higher degree to deadlock problem to occur. The

initial solution to this problem relied mostly on a DBMS (Distributed or

Centralized) to choose a victim transaction to abort according to some

criteria like login time, priority of transaction or number of resources

required.

Solutions to this problem as suggested by various researchers

[8, 10, 13, 47], have so far been based almost exclusively on a

strategy of dividing the database into units or entities, giving access

that may be controlled by a database concurrency control. These

database units have variable sizes, it may be the whole database or

entire table, and also it could be the database row, locking these units

is done according to some rules (locking protocol e.g. two-phase

locking protocol) to ensure data consistency and integrity. One of the

famous approaches to lock a database item is by representing a

database as multiple granularity hierarchy presented by Gray et al

1976 [14], locking is done in top down and releasing locks are done

www.manaraa.com

7

 in bottom up. For example, a transaction must lock all

ancestors of a node in intention mode before locking the node itself

in exclusive or shared mode; the smallest lockable unit in this

approach is the database row.

This study aims to increase the granularity hierarchy tree one

more level down to include the attribute level, i.e. locking will be done

at the attribute level to allow several transactions to access the same

row simultaneously. The suggested attribute level is expected to

decrease the user competition for acquiring data items, which is

expected to reduce the total delay time, because the transactions may

not need to wait for long time to get unlock state, and due to the

several transactions may work simultaneously at the same database

row. Also the study expects to increase the performance of the

database, by the ability to reduce the mean service time. However,

this will increase the overhead on the database.

1.4. Dissertation Questions

1- Does increasing the granularity hierarchy by one more level

decrease the user competition for acquiring data items?

2- Does increasing the granularity hierarchy by one more level

increase the performance of the database?

www.manaraa.com

8

1.5. Dissertation Methodology

This dissertation will pass through the following phases:

 Identifying the shortcomings of the current solutions of

deadlock problem.

 Enhance the intention locking algorithm, by adding a new

feature which is the attribute locking.

 Simulate the enhanced algorithm to provide a proof of

concept.

 Analyze the results and compare the measuring units

(response time, delay time, overhead and performance) with

the already used units. Then, conclusions and comments will

be drawn.

1.6 .Rationale of the Study

Several transactions may be executed concurrently and the

system must control the interaction among them in order to prevent

those transactions from destroying the consistency of database (i.e.

ensuring serializability). Several mechanisms may be used to achieve

this control: one of them is by obtaining a lock on a data item before

the transaction can use it. The others are time stamp-based protocol

and time stamp-ordering protocol.

www.manaraa.com

9

The lock may be obtained on the entire database, entire table,

page, or entire row by representing the database as a tree of multiple

granularity levels [11, 33]. It can be achieved by defining a hierarchy

of data granularities with variable sizes, where the small granularities

are nested within larger ones. An example of such hierarchy [33] is

represented graphically in Figure1.2.

 Figure 1.2: granularity hierarchy [33]

The top level (DB) represents the entire database, A1 in the

second level represents node of type area which has a node of type

file (Fa, Fb and Fc) in the next level. Finally, each file has node of type

record or row (ra1,ra2,..rcm), (where ra1 represents the record or row

number one of the file Fa, ra2 is the row number two of file Fa , etc..) ,

in the lowest level.

D

A2

ra

Fc Fb aF

A1

ra ra rc1 rbrb rc

www.manaraa.com

11

To avoid scanning the tree in order to check if the database item

is locked in a compatible mode or not, a new class of locking is

produced called intention lock mode as shown in table 1.1 [33]. The

term intent is used as a flag placed in a database node (in a database

hierarchy) to indicate the use of sub tree in a specific mode, it is not

considered as a lock mode (i.e. the transaction can't precede with its

execution until it acquires the shared or exclusive mode on the

database item (node) [20]. Intention locks are acquired at the top level

before explicit locking being placed at the lower level. There is an

intention mode associated with shared mode called Intention Shared

(IS) which protects requested shared locks on some resources lower

in the hierarchy (i.e. indicates an intention to read data at lower level),

and another with exclusive mode called Intent Exclusive (IX) to

protect requested exclusive locks on some resources lower in the

hierarchy (i.e. indicates an intention to write data at lower level). The

third one is combined from the Shared and Intent Exclusive which is

called Shared with Intent Exclusive (SIX) to protect requested shared

locks on all resources and intent exclusive locks on some resources

of lower levels (i.e. indicates to read all but to write some of resources

at lower level). Intent locks serve two purposes [35]:

www.manaraa.com

11

 To prevent other transactions from modifying the higher-level

resource in a way that would invalidate the lock at the lower

level.

 To improve the efficiency of DBMS in detecting lock conflicts

at higher level of granularity.

The other two modes of locking a resource are the Shared (S)

and Exclusive (X) modes [33], the shared (S) is obtained by a

transaction in order to read the resource e.g. SELECT statement,

which can read but could not write. While exclusive mode (X) is

obtained for both read and write to a resource e.g. UPDATE

statement.

Table 1.1: Compatibility matrix for granularity hierarchy in Figure 1.2

[33]

 IS IX S SI
X

X

IS T T T T F

IX T T F F F

S T F T F F

SIX T F F F F

X F F F F F

www.manaraa.com

12

A locking compatibility function controls multiple

transactions for acquiring locks on same resource at the same

time. If a resource is already locked by another transaction, a new

lock request can be granted only if the mode of requested lock is

compatible with the mode of the existing lock. If not, the

transaction requesting a new lock must wait for the existing lock

to be released or for the lock timeout interval to expire. For

example, no lock modes are compatible with exclusive locks,

while an Exclusive (X) lock is held, no other transactions can

acquire a lock of any kind (shared or exclusive) on that resource

until the Exclusive (X) lock is released. Alternatively, if a Shared

(S) lock has been applied to a resource, other transactions can

also acquire a shared lock on that item even if the first transaction

has not completed. However, other transactions cannot acquire

an exclusive lock until the shared lock has been released

The locking on granularity tree can be summarized as follows:

"If a node is locked in an intention mode, it implies that explicit locking

is being done at a lower level of tree. For example if a node is locked

in intention-shared mode (denoted by IS), this implies that explicit

locking is being done at lower level of the tree but only with shared

www.manaraa.com

13

mode locks. Similarly, if a node is locked by intention-exclusive

mode (denoted by IX) then the explicit locking will be used at a lower

level of the tree with exclusive mode or shared-mode locks. If a node

is locked in shared and intention-exclusive mode (denoted by SIX),

this implies that the sub tree rooted by that node is locked explicitly in

shared mode and that explicit locking is being done at lower level with

exclusive-mode locks" [33]. The transaction can lock a node in top-

down order and unlock in bottom-up order by using the following rules

[33]:-

1. The lock can be done according to the compatibility matrix Table

2. The transaction must lock the root first in any mode.

3. The node can be locked in S or IS, if the parent of that node is

locked in IX or IS mode.

4. The node can be locked in X, SIX or IX, if the parent of that node

is locked in IX or SIX modes.

5. The transaction can lock a node if the transaction has not

previously unlocked any node.

6. The transaction can unlock any node, if none of the children of

that node is locked by that transaction.

www.manaraa.com

14

Deadlock is particularly troubling because there is no general

solution to avoid it. Two common places where a deadlock may occur:

between processes in an operating system (distributed or centralized)

and between transactions in a database [9, 31, 33]. By reducing the

competing parts among transactions, the suggested method is

expected to reduce the deadlock occurrences.

1.7. Goals of this Dissertation

The purpose of this study is to develop a new technique to

divide the database row among more than one transaction by using

the multiple granularity, allowing the transaction to lock the needed

attributes instead of locking the whole row and trying to reduce the

overhead. This technique will be applied to a single database

(centralized) first, and then modifying it to the distributed database

environment.

1.8. Dissertation Contribution

As shown in Figure 1.3, the new level is representing the

attributes for each row after some modifications. Each node in the

hierarchy can be locked individually as in the two-phase locking

protocol according to the compatibility function matrix Table 1.1.

www.manaraa.com

15

The locking can be done on the part of the row including the key

or the index abreast with the attributes needed by the transaction. This

can be done by ensuring that no qualification conflicts will occur among

the competing transactions. This procedure is expected to satisfy the

following:

1. Increase the concurrency, because the same row may be

manipulated by more than one transaction at the same time.

2. Reduce the deadlock problem occurrences, because the

competing parts are reduced into some attributes instead of the

whole row.

3. Increase performance and system throughput, by increasing

the number of transactions executed in the system.

www.manaraa.com

16

 Figure 1.3: Proposed granularity hierarchy

1.9 Dissertation Structure

This dissertation is organized as follows:

 Chapter One: Presents introduction to dissertation subject,

introduces the problem to be addressed, gives aim, a

justification and purpose of this work, and lists the basic

structure of the thesis.

 Chapter Two: Provides Preliminaries for Current Locking

based protocols and Current solutions to deadlock problem in

distributed database. This chapter provides an overview of

*

D

B

A1

aF

A2

bF Fc

ra2 ra1 rb1 ran rbk rc1 rc

anra

1

a2ra

1

a1ra

1

www.manaraa.com

17

 currently used mechanisms for locking database items and

current solutions to distributed deadlock problem. Also pointing

the drawbacks of the previous solutions.

 Chapter Three: Presents the enhanced algorithm for locking

attributes and how it deals with the distributed deadlock. A

simulation model will be used to validate the proposed structure

and algorithm.

 Chapter Four: Deals with the analysis of the proposed

algorithm on centralized database.

 Chapter Five: Deals with the analysis of the proposed algorithm

on distributed database (analyzes possible benefits or

drawbacks). It will investigate to what degree the algorithm

facilitates solving the distributed deadlock problem.

 Chapter Six: Provides basic conclusions as well as directions

for future research.

 Appendices: One appendix exists for showing the input and

output parameters of a simulation program.

www.manaraa.com

18

1.10 Conclusion

 The important use of databases and the increasing number of

users, who use these databases, become dominant factors in

increasing the availability and reliability of the data contained in a

database. Increasing lockable database items by allowing fields to be

locked instead of rows, is the approach presented in this dissertation.

This approach is expected to increase concurrency as well as

decrease deadlock occurrences.

www.manaraa.com

19

CHAPTER TWO
LITERATURE REVIEW

This chapter is an overview of the lock and deadlock processes.

It discusses the existing mechanisms for locking database items, and

handling deadlock problems in distributed database systems, and

lists the shortcomings of the available solutions. The preliminaries are

given on five areas:

(i) Handling concurrency control in a database by locking

techniques.

(ii) Review of locking techniques in different database

systems.

(iii) Review of deadlock handling in distributed database

systems.

(iv) Handling deadlock in some well known databases.

(v) Locking performance in a database.

2.1 Introduction

In a database concurrency control, there are several

approaches used to preserve the database consistency and integrity;

the more popular approach is by locking a database item before using

it. The size of the database items that can be locked (lockable size)

www.manaraa.com

21

is discussed and proposed by many researchers. During the

investigation of the solutions produced to choose a suitable database

lockable units and to solve the database deadlock problem, it may

easily be found that there is a trade off between the produced

solutions and the performance of the system. Many researches are

presented here to show the different approaches among them. It

should be a compromise between choosing the ideal solution and the

suitable environment.

2.2 Handling Concurrency Control in a Database by
Locking Techniques

Several transactions may be executed concurrently and the

system must control the interaction among them in order to prevent

those transactions from destroying the consistency of the database

(i.e. ensuring serializability). Several mechanisms may be used to

achieve this control: one of them is by obtaining a lock on data item

before a transaction can use it. The others are time stamp-based

protocol and time stamp-ordering protocol. This dissertation will

concentrate on locking techniques to explain the proposed method.

The two-phase locking protocol was introduced by Eswaran et

al, 1976 [12]; they present some basic definitions for transaction,

consistency and properties of locking, by formalizing the concepts via

a data model. Their paper demonstrates that a transaction can't

www.manaraa.com

21

request a new lock when releasing one, showing that a

transaction is executed in two phases, the first one when a transaction

requesting its locks which is named as growing phase, and the

second is when a transaction releasing locks named as shrinking

phase. They also state that a transaction needs to lock a logical

portion instead of lock physical subset of a database.

 Gray et al, 1976 [14], discuss the database lockable size, and

its effects on concurrency and overhead, because there is a tradeoff

between concurrency and locking overhead. They present a new

locking protocol based on two-phase locking to allow requesting of

concurrent locking by different transactions on various granularities

(variable database unit's size). The proof of this concept is presented

by introducing new lock modes (Intention modes) in addition to the

original shared and exclusive modes, and they introduced four

degrees of consistency named as degree zero for update protect, one

to lost update, two to protect reading incorrect data and degree three

to protect reading incorrect relationships among database items.

 The main factor that could affect the concurrency and locking

overhead is the choice of lockable size. So, if the lockable size is

chosen to be small like a database row then, concurrency is increased

and there is a lot of managing overhead, while the granularity size is

www.manaraa.com

22

 chosen to be large like a database table then, less concurrency and

less overhead to be managed. In this case, one transaction can use

the table at a time, so choosing a granularity of variable sizes may be

more suitable for many environments, and the database management

system must choose the appropriate data item size to be locked by a

specific transaction according to its need. This can be achieved by

assuming that a database is organized as a hierarchy with unique

parent to each node. These nodes are lockable, and the intention is

used to prevent the ancestor of a specific node to be locked in an

incompatible mode and to avoid scanning the hierarchy to determine

if a new lock can be granted or not.

 Gray et al. [14], introduce six deferent intention modes and give

the description to each one as follows:

 NL: Represents that the node is not locked.

 IS: Represents intention share to a node and to allow the

transaction to lock descendant nodes in S or IS mode.

 IX: Represents intention exclusive access to a node and

allow the transaction to lock descendant in X, S, SIX, IX,

or IS modes.

 S: Represents implicitly and explicitly lock to a node and

to all descendants.

www.manaraa.com

23

 SIX: Represents implicitly shared locks to all descendants

and allow the transaction to explicitly locks descendants

in X, SIX, or IX modes.

 X: Represents exclusive lock to a node and its

descendants.

They also present the rules of their protocol and its proof that must

follow to grant the requested lock according to the compatibility matrix

shown in Table 2.1:

 Transaction must hold the ancestor of the required node in IX

or IS before holding the node itself by S or IS mode.

 Transaction must hold the ancestor of the required node in SIX

or IX before holding the node itself by X, SIX, or IX mode.

 Locks are requested in top down and released in bottom up

order.

Table 2.1 (Gray et al, Compatibility matrix)

 NL IS IX S SIX X

NL Y Y Y Y Y Y

IS Y Y Y Y Y N

IX Y Y Y N N N

S Y Y N Y N N

SIX Y Y N N N N

X Y N N N N N

www.manaraa.com

24

Lomet, 1992 [21] discusses the cost of locking needed in

distributed systems and introduces the concept of lock covering which

is the way of performing local or private locking at the system

component to improve the trade-off between concurrency and

overhead. Converting global locks into intention locks for hot data can

reduce the conflict among transactions which improves the

concurrency. Using this converting for cold data will reduce the

locking overhead. Lomet presents two ways to access a distributed

data, the first way with the server independence responsible for

accessing data portion at a time, and to use messages to coordinate

the accessing of distributed portions. The other way is accessing

shared data by several servers. He concentrates on explaining that

lock management is to be done with more independence, by

performing lock management privately on the resources by each

server. He also introduces some locking fundamentals by seeking

formal definitions used by the lock manager to grant or deny an

access to a resource.

Galindo and Rabitti, 1995 [13], discuss the gap between

theoretical and practical DBMS situations like the access of redundant

data which is the core of indices. Also they present a proposal for

www.manaraa.com

25

 locking problem in practical situations by explaining the

difficulties to implement such redundancy of data to achieve the aim

of increasing concurrency and decreasing overhead. They implement

their aim through discussing the multi granularity locking, locking of

logical structure rather than locking of logical rows and locking of

redundant data to reduce overhead. In multi granularity locking,

database items are arranged in a hierarchy and could be locked by

using intention lock to coordinate transactions. The path of a node

must be locked in intention mode to prevent other transactions from

locking intermediate nodes in that path in an incompatible mode. The

hierarchy is static in terms of fixed number of fields in each record,

and dynamic in terms of number of records in each file, so the number

of records is growing dynamically. To lock a field of a row consisting

of N fields in shared or exclusive modes, there are 2N type locks

needed to perform this and each row needs a compatibility table to

determine the conflicts among them.

In locking logical structure when in some situations and

sometime, there is a need to acquire a lock to non existence item,

they proposed to add virtual field to logical database structure with

values zero or one to indicate if the required record or item really

exists in a database or not.

www.manaraa.com

26

Concerning the locking of redundant data, they propose the

concept of write implication to force the transaction to execute its write

operations according to a given constraint e.g. A + B = 0, then when

the transaction is going to update x it must also update y. This is can

be done by issuing a single lock to cover A and B in order to reduce

the locking overhead. For more complicated constraints, the concept

of equivalent classes is proposed to copy these constraints into

classes and lock all of them before the transaction can perform a write

operation to any class, the authors called this procedure a collective

lock.

Ries and Stonebraker, 1997 [29], present a study about the

more suitable granule size and introduce an example of some well

known databases using physical locks on the items like records,

pages, or files. These granules are records in CODASYL and System

R, pages in IMS and a column in INGRES. Some systems are using

a variable granule sizes dynamically, or in terms of using predicate

locks, that is, lock is set to specific database portion according to

some qualifications. In case of physical locking used, fine granularity

increases concurrency as well as increases locking overhead, while

coarse granularity decreases both of them. So, the granule size

www.manaraa.com

27

affects the system performance and throughput. When using

predicate locks, they conclude three results during their proof. First,

the number of locks to be managed is decreased because the number

of locks is related to the number of active transactions in the system

not the database size. Second, predicate locking requires more CPU

time. Third, there is a reverse relation between transaction size and

granule size, instead of pre specified granularity, the transaction

determines the database portion to be locked.

Croker 2001 [10], introduces new mechanism to increase

concurrency by restricting the lock and unlock steps within the

transaction, and he defines a cost function to measure the conflicts

among transactions executed in the system as well as to measure the

locking time period for transactions, because when this time becomes

long, this means that the probability of the conflict time between

competing transaction becomes high. The techniques for reducing the

conflict time between competing transactions and a way to measure

this time presented here is for two phase locking and tree locking

protocols is considered as a base for future building transaction

compiler to optimally use of locks.

www.manaraa.com

28

2.3 Review of Locking in Different Database Systems

Sybase, 2003 [37] has an adaptive server that provides locking

schemes, All pages locking, which locks data pages and index pages,

Data pages locking, which locks only the data pages, Data rows

locking, which locks only the data rows. For each locking scheme,

Adaptive server can choose to lock the entire table for queries that

acquire many pages or row locks, or can lock only the affected pages

or rows.

Oracle, 2008 [26, 27] uses locking technique to solve the

problems associated with data concurrency, consistency, and

integrity. Two types of oracle resources: the user objects (tables and

rows), and the system objects (shared memory). The lowest level of

lockable database item is the row. With a row-level locking strategy,

each row within a table can be locked individually; locked rows can

be updated only by the locking process. All other rows in the table are

still available for updating by other processes. While, using table-level

locking, the entire table is locked as an entity. Once a process has

locked a table, only that process can update (or lock) any row in the

table. None of the rows in the table are available for updating by any

other process. Oracle uses two modes of locking in a multi-user

www.manaraa.com

29

 database, exclusive lock mode and share lock mode, and it

does not use lock escalation, because the probability of a deadlock

becomes higher.

In SQL server 7.0/2000, 2008 [20, 35], the smallest data item

that can be locked is the row; there are three types of modes, Shared

locks, Update locks and Exclusive locks. The Shared locks are used

for operations that do not change or update data, such as a SELECT

statement. While the Update locks are used when SQL Server intends

to modify a page, and later promotes the update page lock to an

exclusive page lock before actually making the changes. Finally, the

Exclusive locks are used for the data modification operations, such

as UPDATE, INSERT, or DELETE.

Ingres, 2008 [16] is a relational database that maintains a lock

on different levels with the row level locking as a lowest level, Ingres

also provides a lock to be done at the whole column (e.g. locking the

balance column in an accounting table).

2.4 Review of Deadlock Handling in Distributed
Database Systems

Deadlock is a problem related to computer systems when using

multiprogramming environment. It appears when the mechanism of

www.manaraa.com

31

 locking system recourses is used to ensure the lost update

problem will not occur, and to preserve system resources either in a

database or in operating systems. The locking techniques preserve

the consistency of a database for example and prevent multiple

transactions from modifying the same database item in a conflicting

mode, such prevention is obtained by allowing some transactions to

perform their tasks and deny others i.e. blocking some transactions,

when two or more transactions are blocked, each one waiting for

database item held by the others, then a deadlock problem occurs.

Deadlocks not only affect system performance, but they also

decrease system throughput as well as increase the cost of recovery

to solve the problem. Four conditions must hold in order for the

deadlock problem to occur [9], first one is by the ability to assign the

resource to only one process or transaction at a time (mutual

exclusion). The second is the ability to request another resource while

already getting one (hold and wait), third is by releasing the resource

only by the process itself (no preemption), and finally is by obtaining

circular chain among transactions, that is holding a resource and

waiting for others (circular wait).There are three main approaches to

deal with a deadlock problem [15], deadlock avoidance, deadlock

prevention and deadlock detection.

www.manaraa.com

31

In a deadlock avoidance approach, deadlocks can be avoided

if certain information about transaction requests is available in

advance. So the database system only grants request that will lead to

safe states, but this is not available in many situations, because most

transactions know the resources at the run time. One known algorithm

that is used for deadlock avoidance is the Banker's algorithm [3, 42].

Deadlock prevention may be achieved by ensuring that at least one

of the above mentioned conditions does not occur, and deadlock

detection attempts to find and resolve an actual deadlock by building

a wait-for-graph and searching for cycles. If a cycle exists, the action

to break the deadlock is necessary by killing and restarting some

transactions that caused the deadlock according to some certain

criteria like the starting time, number of holding resources or the

number of resources required.

In distributed database systems which consist of a number of

sites connected via a network, the deadlock problem becomes more

complex, because the system must build a global wait-for-graph by

the union of local wait-for-graph from each site and searching for a

cycle.

www.manaraa.com

32

Chandy and Misra, 1983 [8], present decentralized deadlock

detection algorithm by assuming that; messages are received in the

same order which they were sent. The algorithm is suitable for both

resources and communication models, and they prove that the

algorithm does not report false deadlocks. Also does not affect

performance because the process can initiate deadlock when it is idle

for a given time which will decrease the computation for deadlock,

only boundary transactions can send a message and use the first

element of the dependency table in the wait path.

An enhancement to this algorithm is introduced by Yeung et al

1995 [49], it uses the wait-for-graph instead of building dependency

table, the source and the destination transactions send messages

rather than all transactions which reduces the overhead. They

compared their presented algorithm with the Candy algorithm and

showed that it was better under high data contention, but it had more

overhead because of the frequent checking of the wait-for-graph.

Wu et al 2002 [47], introduce a new deadlock avoidance

algorithm based on rank of processes within wait-for-graph, this

algorithm does not need prior information about processes and does

www.manaraa.com

33

 not restrict the order of resource requests and it is unnecessary

abortion free. This algorithm is built for the AND model where the

request for several resources may be issued simultaneously. It uses

the partial order of the processes rank to reduce the deadlock

detection. They prove that their algorithm is better than the others in

terms of reducing the number of deadlock detections by reducing the

number of unnecessary abortions, handling gently the overflow and

underflow of ranks. It has the ability of adding multiple edges in the

wait-for-graph at the same time.

When a deadlock occurs in the systems, the overall system will

be degraded until resolving the deadlock. So as long as the deadlock

persists in the system, the system performance and throughputs are

decreased. (Ling and Chiang, 2006) [19]), discuss these factors in

detail and introduce an optimal scheduling for deadlock detection and

resolution in order to minimize the average cost time. In addition, they

introduce a cost function to measure the effect of deadlock in the

system. Whenever a deadlock exists in the system, the process which

needs a resource currently deadlocked can't proceed. So the

deadlock size (number of deadlocked processes) and the time that

the deadlock exists in the system are two main factors that affect and

www.manaraa.com

34

 increase the cost of resolution. The deadlock size is increased

whenever the deadlock exists (i.e. the deadlock persistence time

increases). The model they built is time dependent that associates the

deadlock resolution cost and the deadlock persistence time. They

show that the performance of deadlock handling depends on both

per-execution of deadlock detection algorithm and deadlock

scheduling and formation.

2.5 Handling Deadlocks in Some Well Known
Databases

Sybase, 2003 [37] differentiates between server side deadlock

and client side deadlock, when tasks deadlock in Adaptive Server, a

deadlock detection mechanism rolls back one of the transactions

involved in a deadlock situation and sends messages to the user.

When a client opens multiple connections each of which is waiting for

the other, deadlocks may occur at the application side, but these are

not true server-side deadlocks and cannot be detected by Adaptive

Server deadlock detection mechanisms. Avoiding deadlocks in

Sybase comes from reducing lock contention such as locking fine

granularity instead of coarse granularity, as well as acquiring locks in

the same order, such as updates to several tables must be performed

in the same order.

www.manaraa.com

35

Oracle Database, 2008 [25] automatically detects deadlocks

and resolves them by rolling back one of the transactions involved in

the deadlock, and releasing one of the conflicting row locks, then send

back an error message to the user. In terms of deadlock avoidance,

deadlocks can be avoided, if transactions accessing the same tables

by locking those tables in the same order, either through implicit or

explicit locks. Oracle has some rules to perform locking order, for

example locking of master table must be done before locking of detail

table in case of update. If such rules are followed in application,

deadlocks occurrences are decreased.

SQL Server, 2008 [36] ends the deadlock when it occurs by

automatically choosing one process to be aborted and allowing the

other process to continue. The aborted transaction is rolled back and

an error message is sent to the user, abortion of the process is done

by identifying which of the two processes will use the least amount of

resources to rollback. In case of deadlock avoidance, SQL Server

provides some tips to avoid deadlocks which are:-

 Database must be well normalized.

 Accessing the database objects in the same order each time.

www.manaraa.com

36

 User inputs must be collected before the transaction begins.

 Cursors have to be avoided as much as possible.

 Transactions must be as short as possible, and avoid reading

the database item many times in the same transaction, by

storing it in a temporary variable or in an array to be red from

this location not from the server.

 Ingres database, 2008 [16] like the other databases, aborts one

of the transactions involved in the deadlock situation when detecting,

and allowing the other transaction to continue, as well as an error

message is sent back to the user. All updates made by the transaction

are backed out and the transaction retried in an application program.

To avoid deadlock occurrences, careful use of lock escalation and

transactions must be as short as possible.

2.6 Locking Performance in a Database

 Tay et al 1985, [48] present mathematical model to study the

behavior of the database system with dynamic locking. The model is

separated into data contention and resource contention and this

model can be used to determine the level of data contention that is

allowed in the system. Their model is showing that the transactions

www.manaraa.com

37

 must minimize lock requests, because data contention is proportional

to the square number of locks requested. So a transaction needs k+2

independent requests: one for start, one for termination and the

others (k; 1 ≤ i ≤ k) are for data lock with T as an average inter-request

time uniformly distributed over (0, 2T). During the analysis process

and because of contention for data and resources, it appears that the

more transactions executing in the system, the slower the execution

for each transaction as well as the number of active transactions

decreases. They present the relationship between system workload

(k2N/D where N is the number of transaction and D is the database

size) and thrashing, so when the workload is about 1.5, the system

goes to thrashing (the value 1.5 of the workload has no theoretical

explanation as Tay et al. claimed). The important thing about

workload is the database size D as a factor for conflicts, so as D

increases, the conflict ratio decreases, the number of waiting

transactions becomes less, and the number of active transactions

increases, but unfortunately the overhead increases.

Wolfson 1987 [46] proposes three measures for evaluating

distributed database locking overhead, and comparing these

measures against three locking protocols: the two-phase locking, two-

www.manaraa.com

38

phase locking with fixed order and tree protocol. The first metric

is for measuring parallel execution (maximum number of protocol

steps). The second is for measuring the longest sequence of inter-

site messages that the transaction must send to follow the protocol.

The last one is for measuring the total number of messages between

sites. He showed that, the two-phase locking protocol has the

minimum overhead among the others as well as, it has the smallest

inter site message path, but is not deadlock free.

 Thomasian and Ryu 1990 and 1991 [32, 38], produced and

developed a mathematical model with dynamic two-phase locking.

Transactions are classified according to the number of data items

needed and the mode of request. The developed model is affected by

blocking and by restart. Analysis of the model is based on the mean

number of locks held by a transaction. Their model is composed from

two sub models, the database model and the system model.

Exclusive mode requests to update a data item and mixed of read and

write modes are two sub models of database model. The system is

analyzed by hierarchical model to derive parameters in a lower level

and use them in a higher one, such models are response time,

throughput, resource contention and data contention.

www.manaraa.com

39

 Their model shows that the mean number of lock conflicts is a

good measure for lock contention which is expressed by mean

number of locks multiplied by the probability of conflict, when the

value of this measure approaches 0.75, the system of dynamic

locking of fixed size transactions goes to thrash. By analyzing the

model, Thomasian and Ryu found that, the system performance is

affected by transaction blocking caused by lock conflict rather than

restart, in a certain degree of concurrency, the system performance

is decreased due to an increase in arrival rate, while, in a systems

with variable transaction sizes, the degradation of system

performance is proportional to the transaction size.

 Thomasian 1998 [39] summarizes the performance metrics of

dynamic locking during derivation of mathematical formulas

representing the database model. The standard locking model

analyzed in his article is useful to understand the factors leading to

system degradation. He found that the blocking is the main cause of

decreased system performance, while the transaction restart to solve

deadlock is considered as secondary reason. In terms of system

thrashing, there is no ideal way to control system workload to prevent

thrashing. The mean number of active transaction is maximized at the

www.manaraa.com

41

 point of 30% of transactions are blocked, so the system begin

thrashes after reaching this point. The probability of lock conflict is

proportional to k2 which is dependant on transaction length (number

of operations) rather than number of transactions.

Bernstein and Newcomer 2004 [6] introduce a mathematical

model for locking performance to measure the probability of lock

conflict, deadlock occurrences and throughput. The model is based

on three variables which are the mean number of lock requests,

database items and the number of transactions in the system. The

model is built by assuming that each transaction has a mean of K

write locks request on average with T time between requests, D of

lockable data items (database size) and with N transactions running

at a given time, by considering that all database items have the same

chance of access, the following formulas can be derived:

 Probability of lock conflict is proportional to K2 * N / D.

 Probability of deadlock occurrences is proportional to K4 * N /

D2.

 Throughput is proportional to (N / T') * (1 – A* K2 * N / (2*D)).

Where T' is transaction execution time (i.e. total transaction time –

waiting time for locks to grant) and A is a ratio of transaction waiting

time per lock conflict to total transaction time.

www.manaraa.com

41

2.7.Conclusion

Locking is the most popular technique used in a database to

preserve consistency and integrity; locking could be obtained at

different levels when the database is represented as a hierarchy tree

(which is the reality view of a database, i.e. data item could be block

of data, file, record of a file, or field of record) [5]. The level of locking

produces a tradeoff between increasing concurrency and locking

overhead, so it should be a compromise between choosing the ideal

solution according to the suitable environment. Many researchers

recommend to fragment the database relation into two or more, in

order to reduce the data contention, which may happen among users

[6], yielding to other problems such as the need to repeat the key for

each fragments which increases redundancy in a data and the need

to combine those fragments for reporting or viewing the data, which

may need to rewrite some application programs to reflect such

fragments, in addition to the extra load needed for updating all

fragment.

For deadlock, most researchers [8, 19, 47, 49], concentrate

their studies on the most effective criteria to detect deadlock in an

optimal time, or on improving an efficient method for deadlock

www.manaraa.com

42

 avoidance or prevention. Some recommendations presented

by many researchers like [40] to reduce the level of lock contention,

represented by adjusting the locking mechanism of the database

system by using fine granularity of locking, this could be done by

increasing database size (lockable units). So, by increasing the

database size, deadlock occurrences could be minimized [6], and

could make the methods of detecting deadlocks more efficient.

www.manaraa.com

43

CHAPTER THREE
THE PROPOSED METHODOLOGY

In this chapter, the full description of the methodology and

procedure is given, discussion of the motivation for enhanced locking

techniques to cover the attributes of the database rows, and the

enhanced protocol to achieve the aim will be shown with explanation

examples. The proof of the enhanced procedure will pass through

three stages: the first stage is by building and implementing a

hierarchy tree representing the database with new level added to

represent the attributes, the second stage is by building a database

lock manager responsible for coordinating transactions execution, the

final stage is by building full parameterized simulation program to

generate transactions randomly. The three stages are combined

together in order to measure the system performance, system

throughput, and locking overhead. The combined stages or

procedures are executed first using the existing situation as the

database row is lowest level to be locked and processed, then it has

been executed to reflect the new added level (attributes level) after

some modification. Comparison of the two results is given as well as

comparison of the known and published results.

www.manaraa.com

44

3.1 Introduction

The locking techniques used in a databases to preserve

consistency and integrity, may be applied on different levels, by

assuming that the database is organized as a hierarchy tree [11, 33].

When the locking is placed on the entire database, one transaction

can use this database at a time, yielding to no concurrency, but higher

security of the use of a database will be achieved, as well as achieving

high consistency and integrity. As the level of placing lock goes down,

the concurrency increases, so the lowest level applicable in

databases is the row. The problem that this dissertation is attempting

to solve, stems from the increasing need for data to be available at all

time, but there are still much data unused most of time because the

lock of the whole row. So the expanding of one level down may

provide a solution to the problem of increasing concurrency as well

as, decrease the occurrences of deadlock, because there is a relation

between level of locking (competing parts among transactions) and

deadlock occurrences. An enhanced mechanism to increase

concurrency and decrease deadlock is presented here through the

following phases as shown in figure 3.1:

www.manaraa.com

45

Figure 3.1 (Overview of the proposed system)

 Building the database as a hierarchy tree in two stages: first

with the existing solution based on row level locking as the

minimum lockable unit, then expanding the tree one level

down to reflect the fields.

 Implementing database lock manager, that is responsible for

associating locks to database items and ensuring that no

conflict may occur among transactions.

 Building simulation to generate random transactions or

threads to measure and compare the performance and

throughput of the two situations.

All these stages are built using the java programming technology.

The Proposed

System

Simulation

Program

Building Lock

Manager

Building

Hierarchy Tree

Data Base

www.manaraa.com

46

3.2 Hierarchy Tree

There are many situations in which the transaction does not

need the whole attributes during its process, so according to the

increasing need for data to be available, there must be solutions to

make the data available in a reliable way. The proposed method here

is to increase the availability of data by reducing the competing parts

among users by trying to reduce the data item lockable entities. For

example, in the registration system, the material schedule table

contains many attributes like material number, section number,

academic year, semester number, building number, room number,

time from, time to, instructor number, real number, maximum number,

section status and many other attributes. During the registration

process, the registrar (say transaction A) may want to register a

student while other registrar (transaction B) needs to modify the room

number, building number, maximum number or the instructor number

to the same material simultaneously with the first registrar at the same

row. This will not work because transaction A locked the whole row in

exclusive mode, because it needs to modify the real number by

adding one. In this situation, there are some database items that are

not used during the first process (e.g. the maximum number or

instructor number);

www.manaraa.com

47

 also they couldn't be used by the other transactions although

they are available, indicating that, the concurrency is degrading and

the deadlock problem has a higher degree of occurring.

If the table consists of two attributes like (flight number and seat

number) then, any transactions that are competing for the same row

in this table will have a conflict, because they need to lock the

attributes which are two in this situation, and according to database

constraints, the transaction must lock the two attributes, so the locking

will be back one level up to lock the row. In general if any conflicts

occur between transactions, then the locking will be backing one level

up to be at the row level, regardless of the number of attributes.

Figure 3.2 (Database hierarchies at fields level locking)

The hierarchy will be built as shown in Figure 3.2, and the

locking will be done according to the two-phase locking protocol with

D

B

F

b

F

a

F

m

r

a

r

a

r

a

r

b

r

b

rb

k

rm

1

rm

2

r

m

a1

ra

a2

ra

al

ra

a1

rb

a2r

b2

avr

b2

a1r

m2

a2r

m2

aur

m2

The

new

level for

Field

level

locking

www.manaraa.com

48

 multiple granularity locking. If there is a transaction trying to

update a field within a row, for example update the room number or

the maximum size, this can be accomplished by locking the database

file containing the record and the record itself by IX. Then lock the

material number in Shared mode (S) and the room number in

Exclusive mode (X), (because the material number is the key). Then

proceed with its update, at the same time another transaction could

register a student by locking the database, the file containing the

record and the record itself by IX. Then lock the material number in

Shared mode (S) and the room number in Exclusive mode (X) to

accomplish its task (update the room number). So the two

transactions in this case as an example, are working simultaneously

at the same record. The rules to lock a database item (node in the

tree) are mentioned in chapter one, originally presented by (Gray et

al 1976) [14], and explained in detail by Silberschatz et al [33], in

addition to lock the record in intention mode rather than in shared or

exclusive mode when the transaction need not the whole row.

The tree is implemented to represent a central database with

the record as smallest lockable data item, and then is expanded to

include the attributes (fields) to be locked instead of the whole row.

www.manaraa.com

49

 After measuring some metrics like performance, throughput

and overhead, the tree is implemented to represent a distributed

database.

3.3 Database Lock Manager

 In order to build and implement a database lock manager, there

are three requirements that must be taken into consideration for its

data structures [41], these requirements are:-

 When a lock is requested, there must be an efficient way to

check if a conflict will occur with an existing one.

 When a lock is released, any transaction waiting on the same

lock must be resumed.

 When a transaction terminates, all its lock must be released at

once.

The first requirement is to build a single key hash table

containing locks with resource identifier; entries then used to point to

a resource control block for each resource; all resource control blocks

with the same value are linked together in a chain to solve the conflict

and does not scan the whole table to detect a conflict. A hash table is

used for fast content based retrieval [5].

www.manaraa.com

51

The second requirement is to build a queue of lock control blocks

attached to the same resource control block, because multiple locks

can be held for the same resource (i.e. shared locks), and multiple

lock requests can be waiting for that resource. This queue can be

implemented as a linked list ordered by waiting lock requests; the

linked list may have zero or more lock control block with shared locks,

one or more exclusive locks, and an arbitrary number of shared or

exclusive, in this order, because if all requested locks are shared, then

there is no need to wait for the others. The waiting locks are managed

as first in first out.

The third requirement is to build and implement a transaction

control block to determine if all lock control blocks belong to the same

transaction, in order to release all locks held by that transaction at

once, this can be done by deleting the list of lock control blocks that

correspond to the resource control block, then resume the next lock

control block that is waiting in the queue for the resource.

www.manaraa.com

51

 Transaction ID

 Flag

 Transaction

Status

 Number of

locks

 LCB Chain

 Transaction

ID

 Resource ID Resource

ID

 Hash chain Lock mode

 First-In-Queue Lock status

 Next-In-

Queue

 LCB Chain

Figure 3.3 (Data structure of lock manager [41])

3.4 Proof of Concept by Simulation

 The choice of simulation as a proof of concept comes from the

advantages of this method as mentioned in [2] which are:

 Simulation is a popular method and widely used for studying

systems.

 Most complex real world systems can't be evaluated

mathematically in a correct way.

 Simulation provides an easy way to estimate the performance

of existing systems under some operation conditions.

 Simulation provides easy way to compare system alternatives

www.manaraa.com

52

 to choose the best according to predefined requirements.

 Simulation provides a high degree of control over experimental

conditions.

 Systems can be studied by simulation in both long and short

time frames.

According to these advantages, and the clarity of our

motivation, the proof process will be introduced by using simulation.

3.4.1 Building the Simulation

Building a discrete event and full parameterized simulation

program will be done by generating random transactions with different

lock modes as well as different sizes (number of database items

needed for each transaction), Figure 3.4, shows the suggested model

overview, because the original model [29] is deadlock free, the

deadlock block has been enhanced. When the simulation begins,

transactions are generated, assumed to be arriving one at a time, and

start to request some data, the time for these requests is chosen, and

placed in the pending queue. Then the transaction is removed from

pending queue in FCFS discipline, and requests its lock. Each data

granule has a list of transactions holding a lock on it in case of shared

locks, and a queue of transactions waiting to lock it. The transaction

www.manaraa.com

53

requests are scheduled according to the transactions issued

time. The transaction needs a data item to be locked, the lock mode

and the request time are generated randomly. When a request starts

processing (i.e. the lock is granted), the transaction goes to the

processing queue, the pending queue is decremented as well as the

system clock is incremented, the program select the next request and

records its time.

If the request is blocked, the transaction goes to the blocked

queue to be recorded by the simulation program. In case of

deadlocked transactions, all resources are released at once, and the

simulation will also record it in the log file. After the transaction

processing is complete, it releases its lock, and then the blocked

transaction which was waiting for the completed transaction will go to

the front of the pending queue.

www.manaraa.com

54

Figure 3.4 (Simulation model overview)

The simulation parameters (Table 3.1) will be used to generate

multiple snapshots during progress of a simulation, these parameters

are user driven and will vary for each run in order to show the system

behavior. The simulation will be run according to some assumptions

in three stages:

 The first stage when the database lockable unit is the row

as the minimum level.

 The second stage will run after expanding the database

hierarchy one level down, to cover the attributes as

Lock

Reque

st

Lock

Releas

e

Blocked

queue

Granted

Arriving

Transactions

Processing

queue

Pending

queue

Deadlocked

Need new lock

www.manaraa.com

55

 lockable units (both stages will be implemented in a

centralized database).

 The third stage will run on a distributed database

environment.

The assumptions to be considered during progress are:

 The time needed for checking the availability of lock is assumed

to be 1 ms.

 The time needed for setting as well as releasing a lock is

assumed to be 1 ms.

 Time needed to complete data processing is randomly selected

between 20 to 100 ms.

Table 3.1 (Simulation parameters)

Parameter Description Values for
Centralized

Values for
Distributed

Num-table Number of tables in a
database

10 15

Min-num-
tuples

Minimum number of
tuples in each table

1 1

Max-num-
tuples

Maximum number of
tuples in each table

1000,5000 1000,5000

Min-col Minimum number of
columns in each table

1 1

Max-col Maximum number of
columns in each table

10 10

Num-trans Number of transactions
in the system

Up to 1000 Up to 1000

www.manaraa.com

56

Min-trans-
size

Minimum number of
operation

1 1

Max-trans-
size

Maximum number of
operation

20 20

Queue-
length

Maximum queue length 10, 20 10,20

num-site Number of sites 1 3

Many researchers [18, 28, 45] assume such times to lock and

release locks, and if these times are changed, both alternatives will

change (row and field), so the environment is still comparable.

Another assumption is the size of the read and write sets in a

transaction, it is assumed to be equal, because of simplifying the

analysis and we did not have actual data that could serve as an

indication of what would be realistic distribution of the size of the read

or write sets. The operations used by transactions are the DML

operations [11, 31, 33], which are the Insert, Update, Delete and

Select.

3.5 Deadlock Detection Approach

Several approaches are used to detect a deadlock in a

database, one of them which is used in this study, is the timeout

approach. In this approach, a transaction sets a time out for every

lock required, if the lock is not granted within this time, it assumes that

the deadlock has occurred. The simplicity and ease of implementation

www.manaraa.com

57

are two advantageous for this method, in addition it does not

cause network traffic when detecting deadlock in distributed

database, while the timeout must be tuned carefully in order to not

detect false deadlocks or to not allow the deadlock to persist in the

system for a long time [18].

In this study, the check for an available resource is assumed to

take one millisecond, if the lock is not granted immediately, one

millisecond is needed before the next trial, when the lock is granted,

a random number between 20 and 100 milliseconds is chosen as a

processing time, (because we don't have real data), so 51 trials for

acquiring a lock is sufficient in this study to determine if the resource

is blocked or deadlocked. Because if a transaction is granted a lock

to a resource and needs 100 milliseconds to complete its operation at

the resource, then after completion, one millisecond is needed to

release a lock, another transaction may try 51 times to get a lock at

the same resource with one millisecond between each two

successive trials, so it needs 102 millisecond which exceeds the total

time for the first transaction by one, so in the case of not granted a

lock, deadlock has occurred.

www.manaraa.com

58

3.6 The Enhanced Algorithm Description for Locking
Attributes

 The database is assumed to be organized as a hierarchy tree

(Figure 3.2). A lock could be obtained on the entire database, entire

table, page, row or attribute according to compatibility matrix for

granularity hierarchy [33] table 1.1. The transaction can lock a node

in top-down order and unlock it in bottom-up order by using the rules

mentioned in [33] in addition to:

1. The database row is considered as a node, and can be

locked in an intention mode (IS or IX).

2. The key of the row must be locked in a Shared (S) mode,

when the transaction does not need the whole row.

3. The locking of attributes as database nodes must be done

according to the database constraints.

4. Other attributes can be locked in S or X mode.

5. When a conflict occurs, or when the transaction needs to read

or update the whole row, it locks the whole row.

Databases are assumed to be well normalized and have a set

of assertions to satisfy its correct state [12, 34], these assertions

are integrity constraints which specify the characteristics of a data

www.manaraa.com

59

item independent of others, and consistency constraint which

specifies a relationship among database items. For example, if a

database is associated with the following assertions:

a. Z=X+Y.

b. A=2B.

c. Or the value of an item W (say for example the medical

status for a patient), is dependent on the values of other

items (for example some results of medical analysis).

So, these items must be locked together when using attribute level

locking, this is the responsibility of the database lock manager to

accomplish this task, in this example case, the transaction must lock

both X and Y when its need to lock Z (constraint (a) in the above

example). As a theoretical example, suppose that the employee

information table has the following structure:

(Employee ID, Employee Name, Employee Job Title, Marital Status,

Number of Dependents, … etc). So we can't modify Marital Status or

Number of dependents, without locking both of them, because it is not

realistic that a single employee has a number of dependents greater

than zero, and vice versa.

www.manaraa.com

61

3.7 Conclusion

 The proof of concept for enhancing concurrency control and

decreasing deadlock occurrences, by allowing locks to be done at

field level in a database system, will be presented by building a

database lock manager, hierarchy tree, and implementing a

simulation program, to show the system behavior, in addition to

presenting the enhanced algorithm for locking attributes based on

the multi granularity locking, using two phase locking protocol with

dynamic locking. Transactions will be generated randomly as well

as the DML operations, time out approach will be used to detect

deadlock in a system. Database integrity will be preserved by

generating random assertions to ensure the validity of the

presented approach.

www.manaraa.com

61

CHAPTER FOUR
CENTRALIZED DATABASE RESULTS

In this chapter, the findings of the simulation run will be drawn

according to the parameters mentioned in table 3.1; the simulation will

run first as a central database with row level locking as the minimum

lockable unit, then the simulation will be re-run to cover the fields by

expanding the tree (Figure 3.1) one level down to show the results

with field level locking as the lockable unit, and finally results will be

drawn to show the distributed environment. Each run will have a

comparative analysis by drawing some performance measurements.

4.1 Locking Performance

During the performance analysis for the system alternatives,

some fundamental formulas [17, 23] will be used to measure system

performance metrics (System throughput, Mean service time, Mean

waiting time and, locking overhead)

 Arrival rate (λ) which is the number of jobs divided by the

total simulation time (T). λ = number of jobs / T

 System throughput (X) is the number of completed jobs

divided by total simulation time (T). X = number of

completed jobs / T

www.manaraa.com

62

 Mean service time (S) is the total simulation time served

divided by number of completed jobs S = T / number of

completed jobs

 Mean waiting time is the sum of waiting times divided by

the number of completed jobs W = ∑ waiting time /

number of completed jobs

Then the system utilization can also be produced by U = X *

S.

4.2 Simulation Runs at Row Level Locking

The simulation runs according to the following parameters:

Minimum number of tuples is 1.

Maximum number of tuples is 1000.

Minimum number of columns in a table is 2.

Maximum number of columns in a table is 10.

Number of tables is 20.

Minimum Transaction size is one operation.

Maximum Transaction size is 25 operations.

Maximum queue length is 10.

Then, the database size (number of lockable database items)

is the average

www.manaraa.com

63

number of tuples times the number of tables.

DB size= [(1000+1)/2] * 20.

 = 10,000 items.

The database size that is used by the simulation is (10,141)

lockable units, this is because of counting the actual number of

database items after building the tree, according to these parameters,

the simulation runs for 100 transactions, in order to show the

execution behavior for these transactions against the database,

results are produced in Table 4.1:

Table 4.1 (Results after simulation run at row-level-locking)

Transa
ction

ID

Arri
val
Tim

e

Start
Serv
ice

End
Serv
ice

Wait
ing
Tim

e

Execu
tion
Time

Num
ber
of

Lock
s

Numb
er of

Operat
ions

Stat
us

1 0 0 121 0 121 5 2
Don

e

2 31 31 359 0 328 10 4
Don

e

3 31 47 219 0 172 8 3
Don

e

4 31 78 2141 1035 2063 32 18
Don

e

5 31 94 2031 1009 1937 29 17
Don

e

6 31 125 1172 87 1047 31 15
Don

e

7 31 125 2766 1649 2641 37 17
Don

e

www.manaraa.com

64

8 47 141 1453 652 1312 22 12 Done

9 47 141 1297 417 1156 18 9 Done

10 47 156 984 0 828 26 10 Done

11 47 172 891 0 719 24 9 Done

12 47 219 453 0 234 8 3 Done

13 47 219 391 0 172 5 2 Done

14 47 234 703 0 469 13 5 Done

15 78 250 578 0 328 10 4 Done

16 78 266 516 0 250 12 4 Done

17 78 281 484 0 203 8 3 Done

18 78 297 703 0 406 16 6 Done

19 94 312 703 0 391 13 5 Done

20 94 312 434 0 122 6 3 Done

21 94 422 1547 74 1125 27 14 Done

22 94 453 859 196 406 6 3 Done

23 94 484 578 51 94 3 2 Done

24 109 547 1328 0 781 23 10 Done

25 109 578 1141 0 563 24 9 Done

26 125 609 6891 4547 6282 17 8
Deadlo
cked

27 141 672 3219 1520 2547 27 11 Done

28 172 734 1172 0 438 13 6 Done

29 172 797 1141 0 344 14 5 Done

30 172 828 2641 1085 1813 21 8 Done

31 188 859 2312 769 1453 18 7 Done

32 188 922 2094 265 1172 28 13 Done

33 188 953 2578 860 1625 25 15 Done

34 188 984 3562 1226 2578 35 18 Done

35 188 1047 3016 1481 1969 9 8
Blocke

d

36 203 1078 1812 249 734 19 8 Done

37 203 1109 1797 289 688 17 8 Done

38 203 1172 6734 4490 5562 6 8
Deadlo
cked

39 219 1203 1812 0 609 24 8 Done

40 219 1234 1391 0 157 5 2 Done

41 219 1297 3375 1728 2078 13 6 Done

42 219 1328 1844 150 516 14 6 Done

43 234 1359 1578 0 219 11 4 Done

www.manaraa.com

65

44 234 1422 5703 2594 4281 10 3 Done

45 266 1453 5516 2503 4063 9 2 Done

46 266 1484 1602 0 118 7 5 Done

47 266 1547 2953 304 1406 12 4 Done

48 281 1578 2891 225 1313 21 9 Done

49 281 1609 3781 1096 2172 22 8 Done

50 281 1672 1766 0 94 4 1 Done

51 297 1703 1791 0 88 18 10 Done

52 297 1734 4297 1471 2563 14 4 Done

53 297 1844 2703 170 859 15 9 Done

54 313 1922 3844 740 1922 16 7 Done

55 313 1922 3375 612 1453 22 15 Done

56 313 1953 2891 435 938 10 7 Done

57 313 2000 2312 0 312 12 4 Done

58 328 2062 2609 0 547 19 7 Done

59 328 2094 6141 2955 4047 24 18 Done

60 328 2094 3375 1049 1281 8 3 Done

61 328 2219 2292 0 73 9 3 Done

62 344 2250 2484 0 234 9 3 Done

63 344 2281 2484 0 203 6 2 Done

64 344 2344 3094 284 750 18 8 Done

65 344 2375 2703 0 328 13 5 Done

66 344 2406 6641 2964 4235 20 9 Done

67 344 2516 4703 1217 2187 19 16 Done

68 344 2547 2734 0 187 6 2 Done

69 344 2578 2672 0 94 3 1 Done

70 344 2641 7109 3344 4468 18 11 Done

71 344 2672 3656 567 984 9 7 Done

72 344 2703 4297 449 1594 34 15 Done

73 344 2766 7953 3216 5187 18 8 Done

74 344 2797 5359 1007 2562 29 17 Done

75 344 2828 6484 2066 3656 36 19 Done

76 344 2891 3656 93 765 21 9 Done

77 344 2922 6047 1879 3125 21 17 Done

78 344 2953 6078 1600 3125 27 20 Done

79 344 3016 3719 0 703 24 9 Done

80 344 3047 3922 0 875 25 9 Done

www.manaraa.com

66

81 359 3094 3984 365 890 10 9
Blocke

d

82 359 3187 4484 240 1297 3 1 Done

83 359 3187 5672 1314 2485 27 18 Done

84 359 3187 6516 2377 3329 12 19 Done

85 359 3250 3469 0 219 9 3 Done

86 359 3281 3750 0 469 16 6 Done

87 359 3312 3687 0 375 14 5 Done

88 359 3406 3481 0 75 11 3 Done

89 359 3437 5016 115 1579 31 14 Done

90 359 3500 3656 0 156 6 2 Done

91 359 3531 3594 0 63 3 1 Done

92 359 3562 6703 1609 3141 28 10 Done

93 359 3625 6578 1539 2953 23 9 Done

94 359 3656 5234 238 1578 28 14 Done

95 359 3687 5641 536 1954 35 12 Done

96 359 3750 3781 0 31 2 1 Done

97 359 3781 3852 0 71 9 3 Done

98 359 3812 4266 102 454 8 4 Done

99 359 3875 4047 0 172 5 2 Done

100 359 3875 9359 3139 5484 30 16 Done

Simulation total time is: 11547 milliseconds.

Average transactions execution time is: 1.436 seconds.

Total number of transactions is: 100.

Number of completed transactions is 96.

Number of blocked transactions is 2.

Number of deadlocked transactions is 2.

www.manaraa.com

67

 According to the results shown in table 4.1, there are two

deadlocked and two blocked transactions (waiting for a resource but

no cycle exists), viewing the snapshots for these transactions to show

the behavior of the system, the following figures present the flow of

execution, and when deadlocks or blocks occur.

Figure 4.1 (Execution behavior of transaction number 26 at row level

locking)

Transaction 26 runs at time (609):

Trying to lock [DB (1)-TABLE (8)-ROW (33)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (1)-ROW (10)] in [S] mode...... DONE

Trying to lock [DB (1)-TABLE (2)-ROW (9)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (8)-ROW (47)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (9)-ROW (3)] in [S] mode...... DONE

Trying to lock [DB (1)-TABLE (1)-ROW (51)] in [S] mode..... DONE

Trying to lock [DB (1)-TABLE (9)-ROW (7)] in [S] mode...... DONE

Trying to lock [DB (1)-TABLE (3)-ROW (15)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (2)-ROW (1)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [-DB (1)-TABLE (2)-ROW (1)] in [X] mode which was locked in [S] mode by

transaction [38]

Re-Trying to lock [DB (1)-TABLE (2)-ROW (1)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [DB (1)-TABLE (2) – ROW (1)] in [X] mode which was locked in [S] mode by

transaction [38]

Re-Trying to lock [-DB (1)-TABLE (2)-ROW (1(

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [-DB (1)-TABLE (2)-ROW (1)] in [X] mode which was locked in [X] mode by

transaction [38]

Deadlock detected, transaction will release all resources...

Trying to release [DB (1)-TABLE (8)-ROW (33)]...... DONE

Trying to release [DB (1)-TABLE (1)-ROW (10)]...... DONE

Trying to release [DB (1)-TABLE (2)-ROW (9)]...... DONE

Trying to release [DB (1)-TABLE (8)-ROW (47)]...... DONE

Trying to release [DB (1)-TABLE (9)-ROW (3)]...... DONE

Trying to release [DB (1)-TABLE (1)-ROW (51)]...... DONE

Trying to release [DB (1)-TABLE (9)-ROW (7)]...... DONE

Trying to release [DB (1)-TABLE (3)-ROW (15)]...... DONE

www.manaraa.com

68

Figure 4.2 (Execution behavior of transaction number 38 at row level

Transaction 38 runs at time (1172):

Trying to lock [DB (1) - TABLE (2)-ROW (1)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (5)-ROW (12)] in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (3)-ROW (15(

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [-DB (1)-TABLE (3)-ROW (15)] in [X] mode which was locked in [X] mode by

transaction [26]

Re-Trying to lock [-DB (1)-TABLE (3)-ROW (15)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [-DB (1)-TABLE (3)-ROW (15)] in [X] mode which was locked in [X] mode by

transaction [26]

Deadlock detected, transaction will release all resources...

Trying to release [-DB (1)-TABLE (2)-ROW (1)]...... DONE

Trying to release [-DB (1)-TABLE (5)-ROW (12)]...... DONE

Transaction finished at: 6734

Total execution time = 5562 ms.

Transaction 35 runs at time (1047):

Trying to lock [DB (1) - TABLE (1)-ROW (68)] in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (8)-ROW (97)] in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (6)-ROW (51)] [S] mode...... DONE

Trying to lock [DB (1) - TABLE (6)-ROW (61)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (2)-ROW (9)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [DB (1) - TABLE (2) – ROW (9)] in [X] mode which was locked in [X] mode by

transaction [26]

Re-Trying to lock [DB (1) - TABLE (2) – ROW (9)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [DB (1) - TABLE (2) - ROW (9)] in [X] mode which was locked in [X] mode by

transaction [26]

Re-Trying to lock [DB (1) - TABLE (2) - ROW (9)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [DB (1) - TABLE (2) - ROW (9)] in [X] mode which was locked in [X] mode by

transaction [26]

Re-Trying to lock [DB (1) - TABLE (2) - ROW (9)]

Error encountered: lockmanager.QueueOverflowException: Waiting Queue Overflow

Trying to release [DB (1) - TABLE (1)-ROW (68)]...... DONE

Trying to release [DB (1) - TABLE (8)-ROW (97)]...... DONE

Trying to release [DB (1) - TABLE (6)-ROW (51)]...... DONE

www.manaraa.com

69

Figure 4.4 (Execution behavior of transaction number 81 at row level

locking)

Transaction 81 runs at time (3094):

Trying to lock [DB (1) - TABLE (3) - ROW (29)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (3) - ROW (30)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (1)] in [IS] mode...... DONE

Trying to lock [DB (1) - TABLE (2) – ROW (7)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [DB (1) - TABLE (2) – ROW (7)] in [X] mode which was locked in [X] mode by

transaction [79]

Re-Trying to lock [DB (1) - TABLE (2) – ROW (7)

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [DB (1) - TABLE (2) – ROW (7)] in [X] mode which was locked in [X] mode by

transaction [79]

Re-Trying to lock [-DB (1) - TABLE (2) – ROW (7)] in [X] mode...... DONE

Trying to lock [-DB (1) - TABLE (10) – ROW (14)] in [S] mode...... DONE

Trying to lock [-DB (1) - TABLE (2) – ROW (9)]

Error encountered: lockmanager.ResourceLockException:

Error, try to lock [-DBN (1) - TABLE (2)-ROW (9)] in [X] mode which was locked in [X] mode by

transaction [26]

Error encountered: lockmanager.QueueOverflowException: Waiting Queue Overflow

Trying to release [DB (1) - TABLE (3) - ROW (29)]...... DONE

Trying to release [DB (1) - TABLE (3) - ROW (30)]...... DONE

Trying to release [DB (1) - TABLE (1)]...... DONE

Trying to release [DB (1) - TABLE (2) - ROW (7)]...... DONE

Trying to release [DB (1) - TABLE (10) - ROW (14)]...... DONE

Transaction finished at: 3984

Total execution time = 890 ms.

Transaction 79 runs at time (3172):

Trying to lock [DB (1)-TABLE (2) –ROW (7)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (7) –ROW (36)] in [S]...... DONE

…

…

Trying to release [DB (1)-TABLE (2) –ROW (7)]...... DONE

Trying to release [DB (1)-TABLE (7) –ROW (36)]...... DONE

…

…

Transaction finished at: 3875

Total execution time = 703

www.manaraa.com

71

 Figure 4.5 (Execution behavior of transaction number 79 at row

level locking)

 During the inspection of figures 4.1 through 4.5, for execution

behavior of blocked and deadlocked transactions, we can see the

following:

 Transaction 26 (T26): holds a lock on Table (3) Row (15) in [X]

mode, and tries to lock Table (2) Row (1) in [X] mode, but it was

held by Transaction (38) in [S] mode, which in an incompatible

mode, so T26 will wait for this lock to be released by T38.

 Transaction 38 (T38): holds a lock on Table (2) Row (1) in [S]

mode, and tries to lock Table (3) Row (15) in [X] mode, which

was held by T26 in [X] mode, so T38 will wait for this lock to be

released by T26. Then they wait for each other, so a deadlock

has occurred.

 Transaction 35 (T35): tries to lock Table (2) Row (9) in [X] mode,

but it was held by T26 in an incompatible mode, so T35 will wait

in the blocked queue for random period of time, and retry to get

the lock for several times until the lock is obtained, or maximum

queue length reached. So, (T35) is blocked.

www.manaraa.com

71

 Transaction 81 (T81): tries to lock Table (2) Row (7) which was

held by (T79), in an incompatible mode, waits for random period

of time and retries again, during this time, (T79) is finished its

task so (T81) get its lock, and trying to obtain a lock on Table

(2) Row (9), but it was held by (T26) in an incompatible mode,

waits for this lock until maximum queue length is reached. So,

(T81) is blocked.

 We can see that, when a transaction holds a lock on database

item and needs to obtain another lock at another database item

already held by another transaction in a conflicting mode, the first

transaction will be blocked, waiting for a resource (database item) to

be released (transactions 35 and 81). In a situation like this, the

second transaction waiting for the first data item is held by the first

transaction (cycle exist), a deadlock occurs (transactions 26 and 38).

4.2.1 Performance Analysis

 The performance measures for the results shown in Table 4.1

can be summarized according to the formulas mentioned in section

4.1 as follows:

 Arrival rate: λ=100/11.547

 = 8.66 transactions / second.

www.manaraa.com

72

 System throughput X=96/11.547

 = 8.31 transactions / second.

 Mean waiting time W= 68.243 / 96

 = 0.7108 second.

 In order to show the system behavior on different workloads,

the simulator executes 30 times according to the parameters

mentioned in section 4.2, after changing the parameter named

(maximum number of tuples to be 5000), so the database size

becomes 50,000 items.

DB size= [(5000+1)/2] * 20.

 = 50,000 items.

DB size calculated by the simulation is 51,152 items.

Table 4.2 (Results of 30 runs of simulation)

Total
Numbe

r of
Transa
ctions

Compl
eted

Transa
ctions

Simul
ation
Time

Mea
n

Ser
vice
Tim

e

Mea
n

Wai
ting
Tim

e

Mean
Numb
er of
Oper
ation

s

Mea
n

Nu
mbe
r of
lock

s

Arr
ival
rat
e

Throu
ghput

10 10 1.732
0.75

6 0 7 14
5.7
7 5.77

20 20 2.387 0.87
0.10

4 8 12
8.3
8 8.38

30 30 3.226
0.99

3
0.25

8 11 16
9.3
0 9.30

www.manaraa.com

73

40 40 3.656 0.965
0.26

1 11 16
10.9

4 10.94

50 50 3.828 0.948
0.27

3 9 17
13.0

6 13.06

60 60 3.952 0.952
0.28

2 11 17
15.1

8 15.18

70 70 4.087 0.967
0.30

4 11 18
17.1

3 17.13

80 80 4.345 0.98
0.37

2 11 17
18.4

1 18.41

90 90 4.678 1.082
0.39

8 12 20
19.2

4 19.24

100 100 4.983 1.112
0.40

7 13 20
20.0

7 20.07

110 110 5.34 1.221
0.41

3 12 21
20.6

0 20.60

120 120 5.735 1.223
0.42

1 11 21
20.9

2 20.92

130 130 6.11 1.24
0.43

8 12 22
21.2

8 21.28

140 140 6.355 1.301
0.45

1 11 21
22.0

3 22.03

150 150 6.74 1.341
0.47

1 12 19
22.2

6 22.26

160 160 6.952 1.384
0.48

3 11 20
23.0

1 23.01

170 170 7.356 1.402
0.54

1 12 20
23.1

1 23.11

180 180 7.641 1.451
0.71

1 11 19
23.5

6 23.56

190 181 9.906 2.456 1.42 14 21
19.1

8 18.27

200 187
10.40

2 2.613
2.02

9 13 21
19.2

3 17.98

210 194
11.20

3 2.669
2.06

1 12 22
18.7

4 17.32

220 197 11.89 3.045
2.62

7 14 21
18.5

0 16.57

www.manaraa.com

74

230 204
12.43

8 3.242 2.83 12 22
18.4

9 16.40

240 207
14.42

2 3.481
3.01

1 12 24
16.6

4 14.35

250 213
15.80

6 3.422
3.12

1 11 24
15.8

2 13.48

260 219
16.30

4 3.744
3.20

4 15 25
15.9

5 13.43

270 223
17.25

1 3.574
3.38

9 13 26
15.6

5 12.93

280 227 19.42 3.552
3.41

4 15 24
14.4

2 11.69

290 231
20.32

4 3.835
3.65

7 17 25
14.2

7 11.37

300 234
22.50

3 3.609
3.80

2 14 25
13.3

3 10.40

 According to the results shown in Table 4.2, we can see that the

arrival rate and throughput are equal when the system runs up to 180

transactions at a time unit, i.e. all transactions entering the system are

completed successfully. But when the number of transactions

becomes 190 or higher, the system starts thrashing due to deadlock,

or exceeding the waiting queue length, in case of blocked

transactions, this means that the competition among transactions is

increased, Figure 4.6, clarify this.

www.manaraa.com

75

The mean service time increases when the number of

transactions as well as the size of these transactions entering the

system is increased, the same thing occurs with mean waiting time

Figure 4.7. This happens because the system takes more time to

coordinate and execute the transactions.

Figure 4.6 (System Throughput at row level locking)

Figure 4.7 (System performance at row level locking)

System Throughput

0.00
2.00
4.00

6.00
8.00

10.00
12.00

14.00
16.00
18.00
20.00

22.00
24.00
26.00
28.00

30.00
32.00
34.00
36.00

38.00
40.00

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

WorkLoad (Number of transactions)

T
h

ro
u

g
h

p
u

t

Begin Thrashes

System oerformance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70 80 9010
0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0

Workload (Number of Transactions)

Time

Mean Waiting Time

Service time

www.manaraa.com

76

 The system throughput shown in figure 4.6 and the data listed

in table 4.3, agree with (Tay et al 1985 [48]), who claimed that, the

data contention workload (K2N/D) should not exceed 1.5, where K is

the mean number of locks, N is the number of transactions in the

system, and D is the database size. So, when we apply this formula

to the data listed in Table 4.2, we can get the results shown in Table

4.3:

Table 4.3 (Data Contention workload at Database Size 51,152)

Number of Transactions
in the System

Mean Number
of Locks

Data Contention
workload

10 14 0.0383

20 12 0.0563

30 16 0.1501

40 16 0.2002

50 17 0.2825

60 17 0.3390

70 18 0.4434

80 17 0.4520

90 20 0.7038

100 20 0.7820

110 21 0.9484

120 21 1.0346

130 22 1.2301

140 21 1.2070

150 19 1.0586

160 20 1.2512

170 20 1.3294

180 19 1.2703

190 21 1.6381

200 21 1.7243

210 22 1.9870

220 21 1.8967

www.manaraa.com

77

230 22 2.1763

240 24 2.7025

250 24 2.8151

260 25 3.1768

270 26 3.5682

280 24 3.1530

290 25 3.5434

300 25 3.6655

 The rule of thumb presented in [48] which is "The DC-workload

on a system should not exceed 1.5", is used by several researchers

such as Thomasian 93 and 98 [39, 40] who claimed that the rule of

thumb used by [42] is acceptable because the maximum number of

locks requested per transaction is smaller than the database size,

however (Roak et al, 1996) [30] claimed that "it rarely happens in

conventional applications because most access is random and most

transactions lock only a small amount of the database. It can be

mathematically predicted to occur much sooner, if a significant portion

of the transactions are accessing a large part of the database

sequentially" [30].

 Figure 4.8, shows the system locking overhead, which

represent the mean number of locks needed by transactions

www.manaraa.com

78

Figure 4.8 (System locking overhead at row level locking)

4.3 Simulation Runs at Field Level Locking

The simulation runs according to parameters listed in Section

4.2, the database size (number of lockable database items) is

calculated by multiplying average number of tuples, number of tables,

and average number of columns. Because the locking will be done at

field level plus the key for the table, so by assuming that each table

must have at least one field as a key, then the average number of

columns is decreased by one, because the fields can't be locked

without locking the key first in a shared mode.

DB size = average number of tuples * average number of columns *

number of tables.

= 500 * [(maximum number of columns – 1) + (minimum number

of columns -1)]/2 * 20.

Locking Overhead

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

Workload (Number of transactions)

M
e
a
n

 N
u

m
b

e
r

o
f

L
o

c
k
s

www.manaraa.com

79

= 500 * 5 * 20

= 50,000 items.

The database size as the simulations sees it is (49,981)

lockable units, the deference between the database calculated above

and the actual database size as the simulation sees it, is due to the

number of fields that compose the key for each table which is varied

from table to table (expected to be one field as a key for each table)

and, because of the number of database constraints, according to

these constraints, the lock manager can't set a lock on each individual

field in order to preserve database consistency. The following results

are produced for 100 transactions as shown in Table 4.4:

Table 4.4 (Results after simulation run at field-level-locking)

Transa
ction

ID

Arri
val
Tim

e

Start
Serv
ice

End
Serv
ice

Wait
ing
Tim

e

Execu
tion
Time

Num
ber
of

Lock
s

Numb
er of

Operat
ions

Stat
us

1 0 0 195 0 195 9 2
Don

e

2 0 46 312 0 266 14 4
Don

e

3 0 78 218 0 140 8 3
Don

e

4 1 78 2078 419 2000 34 18
Don

e

5 1 78 3312 1426 3234 33 17
Don

e

www.manaraa.com

81

6 2 93 2796 993 2703 34 15 Done

7 3 93 1625 0 1532 41 17 Done

8 3 109 1031 0 922 32 12 Done

9 4 109 1312 174 1203 27 9 Done

10 4 125 1328 0 1203 26 10 Done

11 6 125 3875 2394 3750 32 9 Done

12 8 140 875 0 735 19 3 Done

13 8 156 875 0 719 12 2 Done

14 8 156 906 0 750 17 5 Done

15 9 171 984 0 813 19 4 Done

16 9 187 2546 1148 2359 13 4 Done

17 9 203 1250 0 1047 13 3 Done

18 11 203 1484 0 1281 23 6 Done

19 11 218 1656 0 1438 21 5 Done

20 11 234 1296 0 1062 11 3 Done

21 12 234 953 0 719 31 14 Done

22 12 250 1359 0 1109 14 3 Done

23 14 265 1281 0 1016 9 2 Done

24 14 265 2828 1734 2563 26 10 Done

25 14 281 671 0 390 24 9 Done

26 14 296 953 0 657 23 8 Done

27 14 312 921 0 609 31 11 Done

28 14 312 609 0 297 14 6 Done

29 14 328 546 0 218 19 5 Done

30 16 343 671 0 328 24 8 Done

31 16 359 812 0 453 21 7 Done

32 16 375 1859 409 1484 42 13 Done

33 16 375 1281 0 906 41 15 Done

34 16 375 1484 0 1109 42 18 Done

35 16 390 1406 0 1016 14 8 Done

36 16 406 921 0 515 31 8 Done

37 16 421 1406 561 985 29 8 Done

38 16 421 3140 1568 2719 11 8 Done

39 16 437 1312 0 875 36 8 Done

40 16 437 734 0 297 20 2 Done

41 18 453 859 0 406 19 6 Done

42 18 468 1046 0 578 21 6 Done

43 18 484 1078 0 594 19 4 Done

44 21 484 656 0 172 11 3 Done

45 21 500 640 0 140 11 2 Done

www.manaraa.com

81

46 21 515 765 0 250 12 5 Done

47 21 515 734 0 219 17 4 Done

48 22 531 937 0 406 27 9 Done

49 22 546 1593 454 1047 27 8 Done

50 25 562 968 0 406 7 1 Done

www.manaraa.com

82

51 25 562 1906 574 1344 31 10 Done

52 25 578 812 0 234 19 4 Done

53 25 578 734 0 156 17 9 Done

54 25 593 1078 0 485 21 7 Done

55 27 609 875 0 266 25 15 Done

56 27 625 731 0 106 11 7 Done

57 27 625 3406 1000 2781 18 4 Done

58 27 640 703 0 63 23 7 Done

59 27 640 734 0 94 31 18 Done

60 27 656 2265 217 1609 17 3 Done

61 27 671 2218 93 1547 14 3 Done

62 27 671 3421 1032 2750 12 3 Done

63 28 687 2140 0 1453 9 2 Done

64 28 703 1046 0 343 23 8 Done

65 28 718 953 0 235 13 5 Done

66 28 718 1203 0 485 28 9 Done

67 28 734 1281 0 547 26 16 Done

68 28 734 828 0 94 10 2 Done

69 28 750 812 0 62 5 1 Done

70 28 765 1031 0 266 19 11 Done

71 28 781 937 0 156 14 7 Done

72 29 796 2390 0 1594 38 15 Done

73 29 812 4312 1842 3500 25 8 Done

74 29 828 3015 589 2187 34 17 Done

75 29 828 2875 222 2047 38 19 Done

76 29 843 2921 743 2078 26 9 Done

77 29 859 1937 0 1078 27 17 Done

78 29 875 2453 138 1578 31 20 Done

79 29 875 2062 0 1187 29 9 Done

80 30 890 2546 0 1656 31 9 Done

81 30 906 2687 273 1781 13 9 Done

82 30 921 953 0 32 3 1 Done

83 30 921 1200 0 279 34 18 Done

84 30 937 2296 0 1359 18 19 Done

85 30 953 3093 706 2140 17 3 Done

86 30 968 2890 332 1922 21 6 Done

87 30 968 2781 522 1813 19 5 Done

88 31 984 2015 0 1031 17 3 Done

89 31 1000 2156 92 1156 33 14 Done

www.manaraa.com

83

90 31 1015 2359 0 1344 11 2 Done

91 31 1015 2093 0 1078 9 1 Done

92 31 1031 5078 2953 4047 38 10 Done

93 31 1046 2906 1008 1860 27 9 Done

94 45 1062 1953 0 891 31 14 Done

95 45 1062 1937 0 875 43 12 Done

96 45 1078 2609 0 1531 8 1 Done

97 62 1093 6281 3445 5188 14 3 Done

98 62 1093 2578 0 1485 12 4 Done

99 62 1109 3343 367 2234 11 2 Done

100 62 1140 3390 916 2250 38 16 Done

Simulation total time is: 6360 milliseconds.

Average transactions execution time is: 1.155 seconds.

Total number of transactions is: 100.

Number of completed transactions is 100.

Number of blocked transactions is 0.

Number of deadlocked transactions is 0.

According to the results shown in Table 4.4, the two

transactions (26 and 38) were deadlocked when running the

application at row level locking, but were not deadlocked when

running the simulation at field level locking. Figures 4.9 through 4.13

show the system behavior while executing transactions 26 and 38;

they were deadlocked and transactions 35 and 81 were blocked.

Transaction 26 tries to lock DB (1)-TABLE (3)-ROW (15)-FIELD (3)]

in Exclusive mode, which was done by locking the fields 1, 2 and 3,

www.manaraa.com

84

 because fields 1 and 2 are the key for table 3. At the same time

transaction 38 tries to lock [DB (1)-TABLE (3)-ROW (15(-FIELD (8)],

which was done after locking fields 1 and 2 also. Both transactions

execute their task simultaneously against the same row, without

affecting the database consistency. In such cases, the lock manager

obtains the lock for each transaction on different fields by locking the

key in Shared mode and locking the required fields in Exclusive or

Shared mode.

In such cases, and according to our example of registration

system (Chapter 3), building information table is shown in Table 4.5,

and the material schedule table is shown in Table 4.6 in database (1)

Figure 4.9, which has the following scheme:

Table 4.5: Building information table

Building

Number

Room Number Room Name Room Capacity

1 1 AAU - Room 80

… … … …

… … … …

… … … …

Table 5.6: Material schedule table

www.manaraa.com

85

Mate

rial

Num

ber

Secti

on

Num

ber

Build

ing

Num

ber

Roo

m

Num

ber

Ti

me

Fro

m

Ti

me

To

Instru

ctor

Numb

er

Real

Num

ber

Maxi
mum
Numb

er

Sect

ion

Stat

us

… … … … … … … …
…

…

… … … … … … … …
…

…

… … … … … … … …
…

…

100 1
Hall

1

Roo

m 1
10 11 300 20

35

Ope

n

… … … … … … … …
…

…

… … … … … … … …
…

…

Where (Building Number and Room Number) are the key for

Table 4.5, and (Material Number and Section Number), are the key

for Table 4.6. Then transaction (26) can update field (8) in table (4.6),

real number in this scheme, in order to register a student,

simultaneously with transaction (38), whose update field (4) in table

(4.5), the room capacity. Transaction (26) need to read the room

name, which is obtained by locking the key with room name in table

(4.5), whereas transaction (38) may require to update the Maximum

www.manaraa.com

86

 Number, which is obtained by locking the key with the

Maximum Number in table (4.6). Both transactions can proceed with

their tasks together, which is not allowed when row level locking is the

minimum lockable unit, figures 4.9 and 4.10 show this process.

Figure 4.9 (Execution behavior of transaction number 26 at field

level locking)

Transaction 26 runs at time (296):

Trying to lock [DB (1)-TABLE (8)-ROW (33)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (1)-ROW (10)] in [S] mode...... DONE

Trying to lock [DB (1)-TABLE (2)-ROW (9)-FIELD (4)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (8)-ROW (47)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (9)-ROW (3)] in [S] mode...... DONE

Trying to lock [DB (1)-TABLE (1)-ROW (51)] in [S] mode..... DONE

Trying to lock [DB (1)-TABLE (9)-ROW (7)] in [S] mode...... DONE

Trying to lock [DB (1)-TABLE (3)-ROW (15) - FIELD (8)] in [X] mode...... DONE

Trying to lock [DB (1)-TABLE (2)-ROW (1) – FIELD (3) in [S} mode ….. DONE

Locking is done at Field 1, 2 and 3 because Fields 1 and 2 is the key.

Trying to release [DB (1)-TABLE (8)-ROW (33)]...... DONE

Trying to release [DB (1)-TABLE (1)-ROW (10)]...... DONE

Trying to release [DB (1)-TABLE (2)-ROW (9)-FIELD (4)]...... DONE

Trying to release [DB (1)-TABLE (8)-ROW (47)]...... DONE

Trying to release [DB (1)-TABLE (9)-ROW (3)]...... DONE

Trying to release [DB (1)-TABLE (1)-ROW (51)]...... DONE

Trying to release [DB (1)-TABLE (9)-ROW (7)]...... DONE

Trying to release [DB (1)-TABLE (3)-ROW (15)] - FIELD (8)...... DONE

Transaction finished at: 953

Total execution time = 657 ms.

www.manaraa.com

87

Figure 4.10(Execution behavior of transaction 38 at field level

locking)

Figure 4.11((Execution behavior of transaction 35 at field level

locking)

Transaction 38 runs at time (421):

Trying to lock [DB (1) - TABLE (2)-ROW (1)] FIELD (4) in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (5)-ROW (12)] in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (3)-ROW (15(- FIELD (7)] ….. DONE

Locking is done at Field 1, 2 and 7 because Fields 1 and 2 is the key.

Trying to release [-DB (1)-TABLE (2)-ROW (1)]-FIELD (4)]...... DONE

Trying to release [-DB (1)-TABLE (5)-ROW (12)]...... DONE

Trying to release [DB (1) - TABLE (3)-ROW (15(- FIELD (7)] ….. DONE

Transaction finished at: 3140

Total execution time = 2719 ms. Transaction 35 runs at time (390):

Trying to lock [DB (1) - TABLE (1)-ROW (68)] in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (8)-ROW (97)] in [X] mode...... DONE

Trying to lock [DB (1) - TABLE (6)-ROW (51)] [S] mode...... DONE

Trying to lock [DB (1) - TABLE (6)-ROW (61)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (2)-ROW (9)-FIELD (6)] in [X] mode… DONE

Trying to release [DB (1) - TABLE (1)-ROW (68)]...... DONE

Trying to release [DB (1) - TABLE (8)-ROW (97)]...... DONE

Trying to release [DB (1) - TABLE (6)-ROW (51)]...... DONE

Trying to release [DB (1) - TABLE (6)-ROW (61)]...... DONE

Trying to release [DB (1) - TABLE (2)-ROW (9))-FIELD (6)]...... DONE

Transaction finished at: 1406

Total execution time = 1016 ms.

www.manaraa.com

88

Figure 4.12 (Execution behavior of transaction 81 at field level

locking)

Figure 4.13 (Execution behavior of transaction 79 at field level

locking)

4.3.1 Performance Analysis

 The performance measures for the results shown in Table 4.4

can be summarized according to the formulas mentioned in section

4.1 as follows:

Transaction 81 runs at time (906):

Trying to lock [DB (1) - TABLE (3) - ROW (29)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (3) - ROW (30)] in [S] mode...... DONE

Trying to lock [DB (1) - TABLE (1)] in [IS] mode...... DONE

Trying to lock [DB (1) - TABLE (2) – ROW (7) – FIELD (3)] in [X] mode …. DONE

Locking is done at Field 1 and 3 because Field 1 is the key.

Trying to release [DB (1) - TABLE (3) - ROW (29)]...... DONE

Trying to release [DB (1) - TABLE (3) - ROW (30)]...... DONE

Trying to release [DB (1) - TABLE (1)]...... DONE

Trying to release [DB (1) - TABLE (2) - ROW (7)]...... DONE

Trying to release [DB (1) - TABLE (10) - ROW (14)]...... DONE

Transaction finished at: 2687

Total execution time = 1781 ms.

Transaction 79 runs at time (875):

Trying to lock [DB (1)-TABLE (2)-ROW (7)-FIELD (4, 5, and 8)] in [X] mode..... DONE

Trying to lock [DB (1)-TABLE (7) –ROW (36)] in [S]...... DONE

…

…

Trying to release [DB (1)-TABLE (2) –ROW (7)-FIELD (4, 5, and 8)]...... DONE

Trying to release [DB (1)-TABLE (7) –ROW (36)]...... DONE

…

…

Transaction finished at: 2062

Total execution time = 1187

www.manaraa.com

89

 Arrival rate: λ=100/6.360

 = 15.72 transactions / second.

 System throughput X=100/6.360

 = 15.72 transactions / second.

 Mean waiting time W= 28.344 / 100

 = 0.28344 second.

 According to the results shown in Table 4.4 above, we notice

that, the 100 transactions are completed successfully without blocks

or deadlocks. The important thing is that, the mean transaction

service time is decreased when running the application using field

level locking; it was (1.436 seconds) in row level locking as the

minimum lockable unit, then, decreased to (1.155 seconds) at field

level locking as the minimum lockable unit. The same thing occur with

the mean waiting time, which was (0.7108 seconds), decreased to

(0.28344 seconds), while the throughput is increased. This occurred,

because the competing parts among transactions are tightening and

the transactions have a higher chance to execute concurrently at the

same row.

www.manaraa.com

91

 After changing the maximum number of tuples in a table to 5000

instead of 1000, the database size becomes 250,000 items; (248,256

items as simulation sees it); then, the simulation runs 30 times in order

to show the system behavior, results are shown in Table 4.7.

Table 4.7 (Results of 30 runs of simulation at field level locking)

Total
Numbe

r of
Transa
ctions

Compl
eted

Transa
ctions

Simul
ation
Time

Mea
n

Ser
vice
Tim

e

Mea
n

Wai
ting
Tim

e

Mean
Numb
er of

Opera
tions

Mea
n

Nu
mbe
r of
lock

s

Arr
ival
rat
e

Throu
ghput

10 10 2.36
0.50

1 0 7 18
4.2
4 4.24

20 20 2.375
0.60

4
0.02

1 8 19
8.4
2 8.42

30 30 3
0.67

1
0.09

1 11 22
10.
00 10.00

40 40 3.64
0.68

2
0.12

1 11 21
10.
99 10.99

50 50 3.821
0.72

1
0.16

2 9 23
13.
09 13.09

60 60 4.185
0.76

3
0.20

6 11 24
14.
34 14.34

70 70 4.282
0.80

4
0.21

1 11 26
16.
35 16.35

80 80 4.5
0.85

1
0.23

8 11 24
17.
78 17.78

90 90 4.656
0.94

2
0.24

1 12 24
19.
33 19.33

100 100 4.94
0.95

3
0.25

3 13 26
20.
24 20.24

110 110 5.247
0.96

1
0.27

4 12 27
20.
96 20.96

www.manaraa.com

91

120 120 5.431
0.98

4
0.27

9 11 27
22.1

0 22.10

130 130 5.661
0.99

7
0.28

7 12 28
22.9

6 22.96

140 140 5.738
1.15

4
0.32

4 11 28
24.4

0 24.40

150 150 5.91
1.11

7
0.33

5 12 29
25.3

8 25.38

160 160 6.2
1.13

3
0.34

4 11 29
25.8

1 25.81

170 170 6.341
1.19

3
0.35

1 12 30
26.8

1 26.81

180 180 6.171
1.15

8
0.37

9 11 29
29.1

7 29.17

190 190 6.203
1.21

3
0.42

2 14 32
30.6

3 30.63

200 200 6.421
1.28

8
0.46

9 13 31
31.1

5 31.15

210 210 6.622
1.32

1
0.47

3 12 30
31.7

1 31.71

220 220 6.594
1.40

4
0.47

9 14 31
33.3

6 33.36

230 230 6.722
1.43

1
0.48

1 12 36
34.2

2 34.22

240 240 6.969
1.48

7
0.50

4 12 36
34.4

4 34.44

250 245 8.24 1.66
0.91

4 11 39
30.3

4 29.73

260 248 9.406
1.96

2
1.21

2 15 38
27.6

4 26.37

www.manaraa.com

92

270 252
10.40

1
2.36

1
1.53

2 13 38
25.
96 24.23

280 257
12.40

6
2.43

7
1.61

2 15 37
22.
57 20.72

290 258 13.24
2.90

4
2.61

8 17 37
21.
90 19.49

300 254
15.56

3
3.11

7
2.80

4 14 37
19.
28 16.32

 We can see that, the system runs up to 240 transactions, as the

sample of run shows, without problems; it starts thrashing, when the

workload becomes 250 transactions at the run time interval or higher

(Figure 4.14 and the results are presented in tables 4.7 and 4.8). The

system is subjected to thrashes when the data contention workload

exceeds the value (1.5) the shaded area in the table 4.8, showing this.

Figure 4.15, shows the decreasing behavior for the mean service time

and the mean waiting time, because the transaction does not need to

wait while it can proceed with another one at the same row (average

service time became less as well as mean waiting time).

www.manaraa.com

93

Figure 4.14 (System throughput at field level locking)

Figure 4.15 (System performance at field level locking)

 But unfortunately, the locking overhead is higher, because the

lock manager needs to manage extra locks (the fields or attributes)

for transactions to execute their jobs figure (4.16).

System Throughput

0.00
2.00
4.00

6.00
8.00

10.00
12.00
14.00

16.00
18.00
20.00
22.00
24.00

26.00
28.00
30.00
32.00
34.00

36.00
38.00
40.00

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

WorkLoad (Number of transactions)

T
h

ro
u

g
h

p
u

t

Begin Thrashes

System oerformance

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 10
0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0

Workload (Number of Transactions)

Time

Mean

Waiting

Time

Mean

Service

Time

www.manaraa.com

94

Figure 4.16 (System locking overhead at field level locking)

Table 4.8 (Data Contention workload at Database Size 248,256)

Number of Transactions
in the System

Mean Number
of Locks

Data Contention
workload

10 18 0.013

20 19 0.029

30 22 0.058

40 21 0.071

50 23 0.107

60 24 0.139

70 26 0.191

80 24 0.186

90 24 0.209

100 26 0.272

110 27 0.323

120 27 0.352

130 28 0.411

140 28 0.442

150 29 0.508

160 29 0.542

170 30 0.616

180 29 0.610

190 32 0.784

200 31 0.774

210 30 0.761

220 31 0.852

Locking Overhead

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90
100

110
120

130
140

150
160

170
180

190
200

210
220

230
240

250
260

270
280

290
300

Workload (Number of transactions)

M
ea

n
 N

u
m

b
er

 o
f

L
o

ck
s

www.manaraa.com

95

230 36 1.201

240 36 1.253

250 39 1.532

260 38 1.512

270 38 1.570

280 37 1.544

290 37 1.599

300 37 1.654

 The factors that affect performance when using fine granularity,

mentioned in [5] can be overcome by the following:

 The overhead of locking can be reduced by allowing

transactions to lock a database granule appropriate to their

need.

 The increase of conflicts or data contention because of fine

granularity, can be overcome by increasing database size when

using fields as lockable unit, so the database size is increased

many times more than the increase of locks needed, figure 4.20

shows this increase, while sections 4.2.1 and 4.3.1 clarify the

large increasing behavior of database when using field level

locking.

 The resource contention factor caused by releasing too many

transactions from lock queues to spending more time in

resource queues, can be overcome by the increasing

developments in the hardware.

www.manaraa.com

96

4.4 Comparing the Two Alternatives

 The mean service time, mean waiting time, throughput and

locking overhead for row level locking as well as for field level locking,

are listed in table 4.9, in order to compare the two alternatives. The

throughput for field level locking is higher than row level locking as

shown in figure 4.17, because the competitions among transactions

become less due to the increase of the database size, this agrees

with Bernstein and Newcomer 2004, [6], who claimed that the

probability of lock conflict is proportional to (K2N/D). So, the database

size (D) is increased when the locking becomes at fields (because

multiple transactions can be processed at the same row

simultaneously). Alternative one (row level locking) thrashes when the

number of transactions becomes 190 or higher, while alternative two

(field level locking thrashes when the number of transactions

becomes 250 or higher). At the same time, the mean service time and

mean waiting time (figures 4.18 and figure 4.19), becomes less in

general, because transactions can proceed immediately when no

conflicts occur, and do not need to wait for a long time to get their

locks, for the same reason. The mean service time as well as the

mean waiting time for both alternatives becomes high when the

system goes to thrashes, because the system needs more time to

recover form deadlock.

www.manaraa.com

97

Table 4.9 (Row level locking versus field level locking performance)

Numbe
r of

Transa
ctions

Row level locking Field level locking

Mea
n

Ser
vice
Tim

e

Mea
n

Wait
ing
Tim

e

Throu
ghput

Mea
n

Num
ber
of

Loc
ks

Mea
n

Ser
vice
Tim

e

Mea
n

Wait
ing
Tim

e

Throu
ghput

Mea
n

Num
ber
of

lock
s

10 0.75
6

0 5.77 14 0.50
1

0 4.24 18
20 0.87 0.10

4
8.38 12 0.60

4
0.02

1
8.42 19

30 0.99
3

0.25
8

9.30 16 0.67
1

0.09
1

10.00 22
40 0.96

5
0.26

1
10.94 16 0.68

2
0.12

1
10.99 21

50 0.94
8

0.27
3

13.06 17 0.72
1

0.16
2

13.09 23
60 0.95

2
0.28

2
15.18 17 0.76

3
0.20

6
14.34 24

70 0.96
7

0.30
4

17.13 18 0.80
4

0.21
1

16.35 26
80 0.98 0.37

2
18.41 17 0.85

1
0.23

8
17.78 24

90 1.08
2

0.39
8

19.24 20 0.94
2

0.24
1

19.33 24
100 1.11

2
0.40

7
20.07 20 0.95

3
0.25

3
20.24 26

110 1.22
1

0.41
3

20.60 21 0.96
1

0.27
4

20.96 27
120 1.22

3
0.42

1
20.92 21 0.98

4
0.27

9
22.10 27

130 1.24 0.43
8

21.28 22 0.99
7

0.28
7

22.96 28
140 1.30

1
0.45

1
22.03 21 1.15

4
0.32

4
24.40 28

150 1.34
1

0.47
1

22.26 19 1.11
7

0.33
5

25.38 29
160 1.38

4
0.48

3
23.01 20 1.13

3
0.34

4
25.81 29

170 1.40
2

0.54
1

23.11 20 1.19
3

0.35
1

26.81 30
180 1.45

1
0.71

1
23.56 19 1.15

8
0.37

9
29.17 29

190 2.45
6

1.42 18.27 21 1.21
3

0.42
2

30.63 32
200 2.61

3
2.02

9
17.98 21 1.28

8
0.46

9
31.15 31

210 2.66
9

2.06
1

17.32 22 1.32
1

0.47
3

31.71 30
220 3.04

5
2.62

7
16.57 21 1.40

4
0.47

9
33.36 31

230 3.24
2

2.83 16.40 22 1.43
1

0.48
1

34.22 36
240 3.48

1
3.01

1
14.35 24 1.48

7
0.50

4
34.44 36

250 3.42
2

3.12
1

13.48 24 1.66 0.91
4

29.73 39
260 3.74

4
3.20

4
13.43 25 1.96

2
1.21

2
26.37 38

270 3.57
4

3.38
9

12.93 26 2.36
1

1.53
2

24.23 38
280 3.55

2
3.41

4
11.69 24 2.43

7
1.61

2
20.72 37

290 3.83
5

3.65
7

11.37 25 2.90
4

2.61
8

19.49 37
300 3.60

9
3.80

2
10.40 25 3.11

7
2.80

4
16.32 37

www.manaraa.com

98

Figure 4.17 (Throughput for the two alternatives)

Figure 4.18 (Mean service time for the two alternatives)

System throughput

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

10 20 30 40 50 60 70 80 90 10
0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0

Workload (Number of transactions)

Throughput

Row level

Field level

Begin

Thrashes

Mean service time

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 10
0

11
0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0

Workload (Number of transactions)

Time

Row

level

Field

level

Mean waiting time

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

Workload (Number of transactions)

Time

Row

level

Field

level

www.manaraa.com

99

Figure 4.19 (Mean waiting time for the two alternatives)

Figure 4.20 (Locking overhead for the two alternatives)

Figure 4.20, shows the locking overhead for the two alternatives, in

field level locking, the locking overhead becomes higher because of

the extra management of locking needed by the lock manager, but

this is much less than what was expected before running the

simulation.

4.5 Conclusion

Simulation was implemented to prove that obtaining a lock at

field or attribute level in a database as a lockable is much better than

obtaining a lock at the entire row, this comes from the increasing need

to databases, and due to the availability of data as major requirements

to satisfy the user needs. The discussion presented in sections 4.2

through 4.4, shows that the system at field level locking behave much

Row VS field locking

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90
100

110
120

130
140

150
160

170
180

190
200

210
220

230
240

250
260

270
280

290
300

Number of transactions

M
ea

n
 n

u
m

b
er

 o
f

lo
ck

s

Row

level

locking

Field

level

locking

www.manaraa.com

111

better than at row level locking, because multiple transactions

can process the same database row simultaneously, which

decreases the mean service time as well as the mean waiting time,

because transactions do not need to wait for a long time to get their

locks, which increases the availability of data. At the same time, field

level locking can execute more transactions than row level locking

before thrashing occurs, it works better on a heavy work load. Our

results agree with [48] for data contention work load and also agree

with [6] for probability of conflicts and deadlocks, because the

database size as a dominator in their model decreases the ratio of

conflicts and deadlocks. So in our approach, the database size is

increased, because of using the fields as lockable units. Increasing

the locking overhead, can be managed by choosing the appropriate

data granule size for each transaction [5], for example, if a transaction

needs too many fields of a database row, it locks the row, instead of

locking each individual field.

www.manaraa.com

111

CHAPTER FIVE
DISTRIBUTED DATABASE RESULTS

In this chapter, the findings of the simulation run will be drawn

on distributed database environment, the database is assumed to be

partially replicated over sites. This study uses the single lock manager

approach [33], where the lock manager resides in a single site, and

all lock and unlock requests are made at that site. When a transaction

needs to lock a data item, it sends a request to the site where the lock

manager resides, and then the lock manager determines if the lock

can be granted or not, if yes, the lock manager sends a message to

the initiated site, else the lock request will be delayed. In case of

update operations, and in order to preserve data consistency and

integrity, the lock manager will be responsible for locking all the copies

in all sites which are having a copy. In case of read; the transaction

can read any copy from the sites at which a replica of the data item

resides.

The studied database is assumed to be homogeneous

distributed database, i.e. all sites have identical database

management system software, in this case, the sites agree to

cooperate in processing transactions, and also they are capable of

exchanging information about transactions, to facilitate transaction

www.manaraa.com

112

processing across multiple sites [33]. Transactions generated

randomly with different sizes (number of operations in each

transaction), and also with different modes of DML operations (Read,

Write, Delete and Insert) are considered according to the nature of

transactions generated by the system.

5.1 Distributed Database Population

The distributed database in this study, is composed of three

sites, logically correlated as shown in Figure 5.1, each site consists

of one database. According to the system parameters listed in Table

5.1, there are 15 tables partially replicated over these sites (even in

structure), because it is our concern to measure the performance of

the system by implementing global transactions (i.e. to make the most

of transactions generated by the simulator global). In the sample run

for distributed database, the tables distributed over three sites as one

dimensional partial replication (some objects to all sites) [22]. The

simulation program fills randomly the 15 tables with 5000 database

objects (rows), and then it also randomly distributes the tables across

the three sites. The parameter named, the degree of replication is

considered to replicate the database objects over sites; in this

sample, there are 3 out of 15 (0.2 * 15) tables are replicated as shown

in Tables 5.2 and 5.3.

www.manaraa.com

113

Figure 5.1 (Distributed database architecture for three sites)

Table 5.1 (Simulation parameters for distributed database)

 Parameter Description Values

Num-site Number of sites 3

DB-num Number of databases in each
site

1

DB-obj Number of database objects
for each site

5000

Rep_deg Degree of replication 0.2 *

Num-table Number of tables in a
database

15

Num-trans Number of transactions in the
system

Up to 500

Min-trans-
size

Minimum number of operation 1

Max-trans-
size

Maximum number of
operation

20

Op-mod Operation mode R, RW, W
**

Queue-
length

Maximum queue length 20

Time_check Mean time to check a lock 1 ms

Time_set Mean time to set a lock 1 ms

Distributed Database

DB1 DB2

DB3

User 1

User 2

User 3

User N

User 1

User 2

User 3

User M

User K User 1 User 2

www.manaraa.com

114

* The degree of replication (0.2) is expressed for replication 20% of

logical data items over sites [22].

** R, RW and W are shorts for, all the operations of a transaction are

Read, mixed of Read and Write or Write, respectively.

 Table 5.2 (Distributing database objects into 15
tables)

Number of Database
Objects

Table ID

500 1

300 2

350 3

420 4

280 5

690 6

280 7

340 8

420 9

220 10

235 11

130 12

275 13

305 14

255 15

Time_rel Mean time to release a lock 1 ms

Time_acc Mean time to access a data
object

20 – 100
ms

www.manaraa.com

115

 Table 5.3 (Distributing of 15 tables across three
sites)

Site 3 Site 2 Site 1

Table 1 Table 1 Table 1

Table 4 Table 2 Table 4

Table 5 Table 3 Table 6

Table 7 Table 4 Table 8

Table 12 Table
10

Table 9

Table 13 Table
13

Table 13

Table 15 Table
11

Table 14

We can notice that, the tables (1, 4 and 13) are replicated to all

sites (three sites in this study). This distribution of database objects

will be used for both alternatives (row level and field level locking).

The simulation will run first at row level locking as the minimum

lockable unit, and then the simulation will be re-run to cover the fields

of rows. Each run will have a comparative analysis by drawing some

performance measurements. The effects of the system parameters

will be studied in section 5.5

Transactions will be generated randomly with different mode of

DML operations, if the transactions have all the operations with read

mode, they will be read only transactions, if they are mixed of read

www.manaraa.com

116

and write, they will be mixed, and if they have write mode to all

operations, they will be write transaction. This will be done, in order

to show the system behavior under different modes of operation.

5.2 System Behavior at Row Level Locking

 In order not to repeat the processing discussed in chapter four,

the results shown in table 5.4 are presented to show the behavior of

the system during 20 runs, all times are measured in seconds, 20 runs

are sufficient to show the system behavior. We can see that, the

system begins thrashing when the number of transactions entering

the system becomes 170 or higher, this is clear by inspecting the two

columns named arrival rate and throughput, the two metrics are equal

up to running 160 transactions at a time unit, after this, arrival rate

becomes greater than throughput, which means the system does not

complete all transactions entering the system, (i.e. the competition

among transactions as well as the probability of conflict becomes

high), Figure 5.2, shows such thrashing. By tracing Table 4.2 and

Table 5.4, we can see that the row level locking in centralized

environment executes 160 transactions within 6.952 seconds, while

in distributed environment, 160 transactions are finished within

www.manaraa.com

117

7.8354 seconds, and this is because of the increase in number of

users within a time unit and due to communication delays needed to

execute transactions among different sites.

Table 5.4 (Results of 20 runs of simulation at row level locking)

Total
Numbe

r of
Transa
ctions

Compl
eted

Transa
ctions

Simul
ation
Time

Mea
n

Ser
vice
Tim

e

Mea
n

Wai
ting
Tim

e

Mean
Numb
er of

Opera
tions

Mea
n

Nu
mbe
r of
lock

s

Arr
ival
rat
e

Throu
ghput

10 10
1.426

7
0.76
89

0 7 22
7.0
1

7.01

20 20
2.358

4
0.98
01

0.13
431

8 26
8.4
8

8.48

30 30 3.025
1.08
57

0.32
791

7 23
9.9
2

9.92

40 40
3.251

6
1.12
42

0.42
636

11 24
12.
30

12.30

50 50
3.540

9
1.43
97

0.46
673

11 24
14.
12

14.12

60 60
3.833

5
1.58
59

0.50
028

8 26
15.
65

15.65

70 70 4.169
1.73
32

0.51
722

9 25
16.
79

16.79

80 80
4.475

9
1.75
74

0.56
111

8 25
17.
87

17.87

90 90
4.915

9
1.83
22

0.57
541

9 26
18.
31

18.31

100 100
5.145

8
1.89
49

0.64
581

12 29
19.
43

19.43

110 110
5.403

2
1.86
31

0.68
244

11 28
20.
36

20.36

120 120
5.771

7
1.88
41

0.80
289

9 30
20.
79

20.79

130 130
6.084

1
1.92
01

0.94
886

10 32
21.
37

21.37

www.manaraa.com

118

140 140
6.523

2
1.998

7
1.016

51
9 31

21.4
6

21.46

150 150
7.022

2
2.456

3
1.275

64
8 29

21.3
6

21.36

160 160
7.835

4
3.060

1
2.005

4
8 31

20.4
2

20.42

170 165
17.62

33
4.879

1
4.323

1
7 28 9.65 9.31

180 170
21.46

02
5.528

7
4.733

4
7 27 8.39 7.92

190 178
24.41

59
6.802

4
5.066

7
7 32 7.78 7.29

200 181
27.81

93
8.840

2
6.358

2
7 31 7.19 6.51

www.manaraa.com

119

Figure 5.2 (System Throughput at row level locking)

Mean service time and mean waiting time increase when the

number of transactions entering the system increases, Figure 5.3 and

5.4 shows this increase. Figure 5.5 shows the mean number of locks

needed by transactions at row level locking.

Figure 5.3(Mean service time at row level locking)

System Throughput

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00
28.00
30.00

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Workload (Number of transactions)

T
h

r
o

u
g

h
p

u
t

Mean Service Time

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Workload (Number of transactions)

T
im

e

www.manaraa.com

111

Figure 5.4(Mean waiting time at row level locking)

Figure 5.5 (System locking overhead at row level locking)

Table 5.4 shows that, the system executes successfully 165

transactions out of 170 due to deadlock, Table 5.5 show a sample

execution behavior for the 170 transactions, the time here is

measured in milliseconds.

Mean Waiting Time

0
1
2
3
4
5
6
7
8
9

10

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Workload (Number of transactions)

T
im

e

Locking Overhead

0
5

10

15
20
25
30
35

40
45
50

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Workload (Number of transactions)

M
e
a

n
 n

u
m

b
e
r
 o

f
lo

c
k

s

www.manaraa.com

111

Table 5.5 (Sample results of 170 transactions at row-level-locking)

Tran
sacti
on ID

Arr
iva
l

Ti
me

Sta
rt

Ser
vic
e

En
d

Ser
vic
e

Wa
itin
g
Ti

me

Exe
cuti
on

Tim
e

Nu
mb
er
of

Loc
ks

Num
ber
of

Oper
ation

s

Si
te
s
U
se
d

Ope
ratio

n
Mod

e

Statu
s

1 0 0 306 0 306 16 6 2 R Done

2 0 17
278
6

133
4 2769 27 10

2
RW

Dead
locke

d

3 0 17 630 0 613 25 10 3 RW Done

4 5 41 848 0 807 31 12 3 RW Done

5 5 56 161 123 105 7 2 1 R Done

6 8 56
139
5 214 1339 33 15

2
W Done

7 8 56 239 0 183 10 4 2 R Done

8 8 72 708 0 636 26 9 2 RW Done

9 11 72
128
6 0 1214 39 16

2
W

Done

10 11 88 661 0 573 29 12 3 RW Done

11 11 88
144
2 0 1354 31 17

3
W

Done

12 11 103 208 0 105 11 4 1 R Done

13 13 114 989 0 875 26 11 3 RW Done

14 13 118 551 0 433 16 4 3 RW Done

15 14 134
108
3 0 949 32 15

3
RW

Done

16 16 149
113
0 97 981 31 15

2
RW

Done

17 16 165 413 0 248 11 3 2 R Done

18 16 180
219
4 774 2014 29 14

2
RW

Dead
locke

d

19 16 180 538 0 358 18 4 2 RW Done

20 16 196 991 0 795 34 9 3 RW Done

www.manaraa.com

112

21 16 196 3694
179
3

349
8 39 17

1
W

Done

22 16 212 1241 0
102
9 27 11

3
W

Done

23 22 227 257 0 30 6 2 3 R Done

24 22 227 663 0 436 18 5 2 R Done

25 22 243 1788 613
154
5 31 14

3
RW

Blocked

26 31 259 725 0 466 22 8 2 RW Done

27 31 273 1850 312
157
7 34 14

2
W

Done

28 31 273 350 0 77 6 1 1 R Done

29 44 289 991 47 702 37 11 1 RW Done

30 44 304 428 0 124 11 4 2 R Done

31 44 320 1174 88 854 34 11 1 RW Done

32 44 336 393 0 57 7 2 1 R Done

33 44 336 1909 767
157
3 33 9

2
RW

Blocked

34 51 351 518 0 167 12 3 1 R Done

35 51 351 3284
188
1

293
3 34 11

1
W

Done

36 51 367 1565 0
119
8 38 16

2
RW

Done

37 51 383 1440 594 1057 22 7 3 RW Done

38 66 383 4003 2203 3620 37 17 3 RW Blocked

39 66 398 924 0 526 21 8
3

R
Don

e

40 66 398 1221 0 823 32
1
1

2 R
W

Don
e

..
..

..
.
.

.. ..

16
8 94 1598 5264 1914

366
6 35

1
5

3 R
W

Don
e

16
7 94 1614 2546 302 932 20 7

2 R
W

Don
e

16
8 94 1614 2889 374

127
5 32

1
1

2 R
W

Don
e

16
9 94 1630 3358 0

172
8 39

1
7

3 R
W

Don
e

www.manaraa.com

113

17
0 94 1677 3389 421

171
2 30

1
1

1
W

Don
e

Simulation total time is: 14314 milliseconds.

Average transactions execution time is: 2.159 seconds.

Total number of transactions is: 170.

Number of completed transactions is 165.

Number of deadlocked transactions is 2.

Number of blocked transactions is 3.

Transactions 2 and 18 are deadlocked, while transactions 25,

33 and 38 are blocked. Table 5.6 shows the snapshots for these

transactions.

 Transaction 2 (T2): holds a lock on Table (2) Row (211) at site

2, in [S] mode, and trying to lock Table (6) Row (97) at site 1, in

[X] mode, but it was held by Transaction (18) in [X] mode, which

is incompatible mode, so T2 waits for this lock to be released

by T18.

www.manaraa.com

114

 Transaction 18 (T18): holds a lock on Table (6) Row (97) at site

1, in [S] mode, and trying to lock Table (2) Row (211) at site 2,

in [X] mode, which was held by T2 in [S] mode, so T18 waits for

this lock to be released by T2. Then the two transactions are

waiting for each other, so a deadlock occurs.

 Transaction 25 (T25): blocked, because it is waiting for

transaction 18 to release a lock placed on row (66) table (13) at

site 1.

 Transaction 33 is waiting for transaction 2 and transaction 38 is

waiting for transaction 33 to release a lock, respectively.

Figure 5.6, shows a part of dependency graph for those transactions,

the graph has a cycle between transactions 2 and 18, which indicates

the deadlock occurrences.

www.manaraa.com

115

Table 5.6 (Execution behavior of deadlocked and blocked
transactions at row level locking)

T2 T18 T25 T33 T38

Write items
on row (46)
table (13) at
site 1

Read items
from row
(26) table
(11) at site
2

Read items
from
row(211)
table (2) at
site 2

Write items
on row(97)
table(6) at
site 1

Write items
on table (14)
at site 1

Read items
from row(97)
table(6) at
site 1

Write items
on row(112)
table (6) at
site 1

Read items
from row(66)
table(13) at
site 1

Write items
on row(211)
table(2) at
site 2

Read items
from row(3)
table (8) at
site 1

Write items
on row(66)
table(13) at
site 1

Read items
from
row(206)
table(10) at
site 2

Write items
on row(26)
table(11) at
site 2

Read items
from
row(121)
table (12) at
site 3

Write items
on row(401)
table(4) at
site 3

Read items
from table(5)
at site 3

Write items
on row(206)
table(10) at
site 2

www.manaraa.com

116

Figure 5.6 (Part of dependency graph for deadlocked and blocked
transactions)

5.3 System Behavior at Field Level Locking

 After modifying the hierarchy tree by adding the attributes level

to be locked, simulation is executed 20 times on different workloads

to show the system behavior, the results are presented in table 5.7.

The new system (alternative two) executes up to 180 transactions

successfully without deadlock, when the number of transactions

becomes 190 or higher, the system begins thrashing as shown in

figure 5.7. The important thing is that, 170 transactions are completed

successfully on alternative two (at field level locking), while two

transactions (2 and 18) are deadlocked, when using the row as

minimum lockable unit.

T25

T38

T18

T33

T2

www.manaraa.com

117

Table 5.7 (Results of 20 runs of simulation at field level locking)

Total
Numbe

r of
Transa
ctions

Compl
eted

Transa
ctions

Simul
ation
Time

Mea
n

Ser
vice
Tim

e

Mea
n

Wai
ting
Tim

e

Mean
Numb
er of

Opera
tions

Mea
n

Nu
mbe
r of
lock

s

Arr
ival
rat
e

Throu
ghput

10 10 1.817
0.59

2 0 9 37
5.5
16 5.516

20 20 2.163
0.57

8
0.00
19 6 36

9.2
38 9.238

30 30 2.691
0.64

3
0.02
31 6 35

11.
157 11.157

40 40 3.032
0.73

4
0.09
85 7 43

13.
184 13.184

50 50 3.491
0.80

6
0.18
23 8 42

14.
318 14.318

60 60 3.539
0.89

6
0.19
72 7 40

16.
964 16.964

70 70 3.917
0.91

3
0.21
06 6 39

17.
885 17.885

80 80 4.294
0.97

1
0.37
01 9 41

18.
644 18.644

90 90 4.563
1.01

2
0.35
92 6 40

19.
733 19.733

100 100 4.696
1.11

5
0.39
09 6 42

21.
286 21.286

110 110 4.933 1.42
0.43
12 7 42

22.
290 22.290

120 120 5.378
1.68

5
0.48
99 6 46

22.
317 22.317

130 130 5.731
1.68

1
0.57
41 7 45

22.
692 22.692

140 140 5.876
1.73

6
0.59
21 6 44

23.
818 23.818

150 150 6.216
1.81

2
0.71
23 4 43

24.
143 24.143

www.manaraa.com

118

160 160 6.491
1.88

4
0.774

4 6 44
24.66

1
24.66

1

170 170 6.623
1.90

1
0.801

4 6 42
25.67

2
25.67

2

180 180 6.837
2.13

2
0.881

6 8 39
26.33

9
26.33

9

190 188 9.39
3.02

5
1.294

4 8 49
20.23

2
20.01

9

200 193
12.94

1
3.70

4
1.982

2 10 51
15.46

1
14.92

0

Figure 5.7 (System throughput at field level locking)

System Throughput

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

WorkLoad (Number of transactions)

T
h

ro
u

g
h

p
u

t

www.manaraa.com

119

 Mean service time and mean waiting time for alternative two,

becomes less than those produced when using alternative one,

figures 5.8 and 5.9 shows this behavior, because the transaction does

not need to wait for long time to get its lock. But unfortunately, the

mean number of locks is increased, as shown in Figure 5.10.

Figure 5.8 (Mean service time at field level locking)

Figure 5.9 (Mean waiting time at field level locking)

Mean Service Time

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Workload (Number of Transactions)

Time

Mean Waiting Time

-1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Workload (Number of transactions)

T
im

e

www.manaraa.com

121

Figure 5.10 (System locking overhead at field level locking)

The simulation reruns at 170 transactions as workload by using

alternative two (field level locking), to show the behavior of the system

especially for transactions 2 and 18, which are deadlocked, Table 5.8

shows the results.

Table 5.8 (Sample results of 170 transactions at field-level-locking)

Trans
actio
n ID

Arr
iva
l

Ti
me

Sta
rt

Ser
vic
e

En
d

Ser
vic
e

Wai
tin
g

Tim
e

Exec
utio

n
Time

Nu
mb
er
of

Loc
ks

Num
ber
of

Oper
ation

s

Si
te
s

us
ed

Oper
atio

n
Mod

e

St
atu
s

1 16 0 47 0 47 27 5
2 R

Do
ne

2 32 78 266 0 188 36 9
2 RW

Do
ne

3 32 110 282 0 172 38 8
3 RW

Do
ne

Locking Overhead

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Workload (Number of transactions)

M
e
a
n

 N
u

m
b

e
r
 o

f
L

o
c
k
s

www.manaraa.com

121

4 32 141 860 0 719 38 11 3 RW Done

5 32 157 766 0 609 9 2 1 R Done

6 32 157 1563 359 1406 39 14 2 W Done

7 32 172 1078 0 906 21 3 2 R Done

8 32 172 594 0 422 37 8 2 RW Done

9 32 172 610 0 438 52 17 2 W Done

10 32 188 750 0 562 44 10 3 RW Done

11 32 203 782 0 579 39 19 3 W Done

12 32 203 407 0 204 18 3 1 R Done

13 32 219 422 0 203 31 12 3 RW Done

14 32 235 532 0 297 27 5 3 RW Done

15 32 235 453 0 218 41 14 3 RW Done

16 32 250 547 0 297 39 14 2 RW Done

17 32 266 594 0 328 18 3 2 R Done

18 32 282 703 0 421 38 16 2 RW Done

19 32 297 547 0 250 22 5 2 RW Done

20 32 297 297 0 0 44 10 3 RW Done

..

169 125 1042 3212 0 2170 44 19 3 RW Done

170 131 1231 3221 449 1990 37 13 1 W Done

Simulation total time is: 11036 milliseconds.

Average transactions execution time is: 1.898 seconds.

Total number of transactions is: 170.

Number of completed transactions is 170.

Number of deadlocked or blocked transactions is 0.

 Simulation total time and average transaction execution time

becomes less, and transactions 2 and 18 are completed successfully,

Table 5.9, show the behavior of running these transactions.

www.manaraa.com

122

 Transaction 2 tries to lock [TABLE (2)-ROW (211)-FIELDS (7) at

SITE 2] in Shared mode, which has been done by locking the fields 1

and 7, because field 1 is the key for table 2. At the same time

transaction 18 tries to lock [TABLE (2)-ROW (211) - FIELD (3) at SITE

2], which has been done after locking fields 1 and 3 also, the same

thing occurs when transactions 2 and 18 try to lock [SITE (1) – TABLE

(6) – ROW (97)] fields 4, 6 and 6 respectively, each of them holds a

lock at the fields they need. Both transactions execute their task

simultaneously against the same row, without affecting the database

consistency, In such cases, the lock manager obtains the lock for

each transaction on different fields by locking the key in Shared mode

and locking the required fields in Exclusive or Shared mode. Figure

5.11, shows that, the cycle which exists at row level locking, is

removed from the dependency graph for the deadlocked and blocked

transactions, when executing the field level locking system.

www.manaraa.com

123

Table 5.9 (Execution behavior of transactions 2,18,25,33,38 at field
level locking)

T2 T18 T25 T33 T38

Write items
on field(5)
row (46)
table (13)
at site 1

Read items
from
field(5) row
(26) table
(11) at site
2

Read items
from field
(7)
row(211)
table (2) at
site 2

Write items
on field (4)
row(97)

Write items
on table
(14) at site
1

Read items
from field
(5,6)
row(97)
table(6) at
site 1

Write items
on
row(112)
table (6) at
site 1

Read items
from field(4)
row(66)
table(13)
at site 1

Write items
on field(3)
row(211)

Read items
from row(3)
table (8) at
site 1

Write items
on field(8)
row(66)
table(13) at
site 1

Read items
from
fields(6,7,8)
row(206)
table(10) at
site 2

Write items
on field(8)
row(26)
table(11) at
site 2

Read
items from
row(121)
table (12)
at site 3

Write
items on
row(401)
table(4) at
site 3

Read
items from
table(5) at
site 3

www.manaraa.com

124

table(6) at
site 1

table(2) at
site 2

Write
items on
field(3)
row(206)
table(10)
at site 2

Figure 5.11 (Part of dependency graph for transactions
2,18,25,33,38 at field level locking)

5.4 Comparing the Two Alternatives

Table 5.10 shows the mean service time, mean waiting time,

throughput and the mean number of locks for the two alternatives, in

order to compare between them.

T25

T38

T18

T33

T2

www.manaraa.com

125

Table 5.10 (Row level locking versus field level locking performance)

Numbe
r of

Transa
ctions

Row level locking Field level locking

Mean
Servi

ce
Time

Mean
Waiti

ng
Time

Throu
ghput

Mea
n

Num
ber
of

Loc
ks

Me
an
Ser
vic
e
Ti

me

Mea
n

Wait
ing
Tim

e

Throu
ghput

Me
an
Nu
mb
er
of
loc
ks

10 0.768
9

0 7.01 22 0.5
92

0 5.516 37
20 0.980

1
0.134

31
8.48 26 0.5

78
0.00
19

9.238 36
30 1.085

7
0.327

91
9.92 23 0.6

43
0.02
31

11.157 35
40 1.124

2
0.426

36
12.30 24 0.7

34
0.09
85

13.184 43
50 1.439

7
0.466

73
14.12 24 0.8

06
0.18
23

14.318 42
60 1.585

9
0.500

28
15.65 26 0.8

96
0.19
72

16.964 40
70 1.733

2
0.517

22
16.79 25 0.9

13
0.21
06

17.885 39
80 1.757

4
0.561

11
17.87 25 0.9

71
0.37
01

18.644 41
90 1.8

322
0.57
541

18
.3
1

2
6

1.012 0.3592 19.733 40
100 1.8

949
0.64
581

19
.4
3

2
9

1.115 0.3909 21.286 42
110 1.8

631
0.68
244

20
.3
6

2
8

1.42 0.4312 22.290 42
120 1.8

841
0.80
289

20
.7
9

3
0

1.685 0.4899 22.317 46
130 1.9

201
0.94
886

21
.3
7

3
2

1.681 0.5741 22.692 45
140 1.9

987
1.01
651

21
.4
6

3
1

1.736 0.5921 23.818 44
150 2.4

563
1.27
564

21
.3
6

2
9

1.812 0.7123 24.143 43
160 3.0

601
2.00
54

20
.4
2

3
1

1.884 0.7744 24.661 44
170 4.8

791
4.32
31

9.
31

2
8

1.901 0.8014 25.672 42
180 5.5

287
4.73
34

7.
92

2
7

2.132 0.8816 26.339 39
190 6.8

024
5.06
67

7.
29

3
2

3.025 1.2944 20.019 49
200 8.8

402
6.35
82

6.
51

3
1

3.704 1.9822 14.920 51
During the inspection of figures 5.12 through 5.14, we can

notice that, the system at field level locking in a distributed database

behaves much better than the system at row level locking, this is due

to the ability to access the same database row (object) by multiple

transactions at the same time. Figure 5.15 shows the overhead of

locking by the two systems, which clearly shows the extra load done

by the field level locking alternative to manage extra locking.

www.manaraa.com

126

Figure 5.12 (Throughput for the two alternatives)

Figure 5.13 (Mean service time for the two alternatives)

Row VS Field Throughput

0.00

5.00

10.00

15.00

20.00

25.00

30.00

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Workload (Number of transactions)

T
h

ro
u

g
h

p
u

t

Row level

Field Level

Row VS Field Mean Service Time

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Workload (Number of transactions)

T
im

e Row level

Field Level

Row VS Field Mean Waiting Time

-1

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Workload (Number of transactions)

T
im

e Row Level

Field Level

www.manaraa.com

127

Figure 5.14 (Mean waiting time for the two alternatives)

Figure 5.15 (Locking overhead for the two alternatives)

5.5 The Effects of System Parameters

5.5.1 Operation mode

Table 5.11, summarizes the data presented in table 5.4

according to the operation mode required by the transactions,

according to this data table, and by the inspection of Figures 5.16

through 5.17 , we can notice that, the mode of operations affects the

system performance, because the lock manager when deals with a

type of transactions that have a write operation, it needs to lock all the

copies in all sites, the same thing is happens when the mode of

transaction operation is mixed of read and write, but with less effect,

because the read operation is executed from the nearest site or

Row VS Field Locking Overhead

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Workload (Number of transactions)

M
e
a
n

 n
u

m
b

e
r

o
f

lo
c
k
s

Row Level

Field Level

www.manaraa.com

128

 locally, if the data item needed exists locally. In dealing with

read operation, we can notice that, the system performance is better,

because of local processing.

Table 5.11 (Transactions classified according to the operation
mode)

Mean
Servic
e Time
for W-
mode

Transactio
n ID

Mean
Servic
e Time

for
RW-

mode

Transactio
n ID

Mean
Servic
e Time
for R-
mode

Transactio
n ID

1344 6 2766 2 328 1

1219 9 610 3 110 5

1359 11 812 4 188 7

3500 21 641 8 110 12

1031 22 578 10 250 17

1547 25 875 13 32 23

1578 27 437 14 438 24

 953 15 78 28

 985 16 125 30

 2016 18 62 32
 360 19 172 34
 760 20 531 39
 468 26
 703 29
 859 31
 1578 33
 2938 35
 3625 38
 1203 36
 1062 37
 828 40

www.manaraa.com

129

Figure 5.16 (The effects of operation mode)

5.5.2 Number of sites

The number of sites also affects the system performance, for

the same reason of distributing database objects Table 5.12 and

Figure 5.18 and 5.19. But the mode of operation has greater effect

than the number of sites.

Table 5.12 (Transactions classified according to the number of sites
used)

Transaction
ID

One Site
(Mean
service
time)

Transaction
ID

Two
Sites

(Mean
service
time)

Transaction
ID

Three
Sites

(Mean
service
time)

5 110 1 328 3 610

12 110 2 2766 4 812

21 3500 6 1344 10 578

28 78 7 188 11 1359

29 703 8 641 13 875

31 859 9 1219 14 437

32 62 16 985 15 953

34 172 17 250 20 797

The effects of operation mode

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Workload

M
ea

n
se

rv
ic

e
ti

m
e

Read Read-Write Write

www.manaraa.com

131

35 2938 18 2016 22 1031

 19 360 23 32

 24 438 25 1547

 26 468 37 1062

 27 1578 38 3625

 30 125 39 531

 33 1578

 36 1203

 40 828

Figure 5.17 (The effects of number of sites used)

In the sample data used in this chapter, the transactions are

mixed in terms of operation mode, and in terms of the number of sites

used. So, we eliminate the extreme values where the transaction is

deadlocked or blocked. The graph in Figure 5.17, shows roughly the

effects of sites used, so when the transaction is locally executed, the

system behaves much better. When the transaction becomes globally

executed, the system performance decreases, due to message

passing among the sites.

The effects of number of sites used

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Workload

Mean service time

Three Sites
Two Sites
One Site

www.manaraa.com

131

5.5.3 Degree of replication

The degree of replication parameter has an effect on the

performance, especially on read only transaction, i.e. the

performance of the system becomes better, because the data may be

locally available most of the time. Burger et al [7, 22], study such

parameter in distributed two phase locking in distributed database

systems, and provide a full description of the parameters that affect

the system performance.

5.6 Conclusion

 As in centralized database approach discussed in chapter four,

simulation is implemented to prove that obtaining a lock at attributes

level on a distributed database will improve the performance. The

discussion presented in sections 5.1 through 5.4, shows that the

system at field level locking behave much better than at row level

locking. Due to the multiple transactions process at the same

database row will simultaneously decrease the mean service time as

well as the mean waiting time. Because transactions do not need to

wait for a long time to get their locks, the availability of data will be

increased. Also alternative two executes more transactions than

alternative one per a time unit before thrashing occurs.

www.manaraa.com

132

 Although the database size is increased in alternative two

because of using the fields as lockable units, a transaction needs

greater time than in centralized database, because the number of

users in distributed database is much greater than in centralized. But

in the two cases, the field level locking system behaves better than

the row level locking.

www.manaraa.com

133

CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS

This chapter provides basic conclusions as well as directions

for future research.

6.1 Introduction

Databases are becoming the core of most applications, and the

number of users is incremented in an unexpected way due to the need

for information in many situations like decision making or even in daily

routine applications. Information must be available in an efficient and

reliable way to satisfy user requirements and to cover the increasing

needs. This usage needs specific techniques to protect the

consistency and integrity of data contained in the database. The most

popular technique used to attain the data protection is the locking of

database items before using it, two phase locking is the most popular

mechanism used in most commercial databases, which coordinates

execution among transactions to preserve consistency as well as

integrity.

Locking can be obtained at different levels of a database with

the row as a minimum lockable unit, in this dissertation, a new

approach is introduced to increase concurrency and to decrease

www.manaraa.com

134

 deadlock occurrences, which is implemented by allowing the

attributes to be locked individually. The approach is implemented first

on centralized, then on distributed database.

6.2 Field Level Locking on Centralized Database

The discussion presented in chapter four, shows that the

system at field level locking behaves much better than at row level

locking, because multiple transactions can process the same

database row simultaneously, which decreases the mean service

time as well as the mean waiting time, because transactions do not

need to wait for a long time to get their locks, which increases the

availability of data. At the same time, more transactions are executed

on field level than row level locking before the system begins

thrashing, which means alternative two works better on a heavy work

load. Our results agree with [48] for data contention work load and

also agree with [6] for probability of conflicts and deadlocks, because

the database size as a dominator in their model decreases the ratio

of conflicts and deadlocks. So, in our approach, the database size is

increased by using the fields as lockable units. Increasing locking

overhead, can be managed by choosing the appropriate data granule

www.manaraa.com

135

 size for each transaction [5], for example, if a transaction needs

too many fields of a database row, it locks the row, instead of locking

each individual field.

6.3 Field Level Locking on Distributed Database

 As in centralized database, the new approach behaves much

better than the existing one, which is the row level locking, because

multiple transactions can process at the same database row

simultaneously, which decreases the mean service time as well as

the mean waiting time. Transactions do not need to wait for a long

time to get their locks, which also increases the availability of data

that is a major requirements to satisfy user needs

 Although the database size is increased in alternative two by

using the fields as lockable units, a transaction needs greater time

than in centralized database, because the number of users in a

distributed database in general is greater than in centralized. Table

5.3 and table 4.5 show that, the system at field level locking executes

200 transactions within 9.736 seconds in the distributed database,

while the same number of transactions needs 6.421 seconds in a

centralized database. But in the two cases, the field level locking

system behaves better than the row level locking.

www.manaraa.com

136

 Alternative two (field level locking), for both environments

(centralized and distributed) will be more suitable than row level

locking, since most transactions entering the system are of update

mode, because the contention becomes higher when exclusive mode

is used.

6.4 Future Works

Even though, the researcher in this dissertation proved that the

proposed approach (field level locking as a lockable unit) improves

the efficiency of the existing one (row level locking as a minimum

lockable unit), it opens different areas for future research to improve

or support the presented solution such as:

1. The assumption considered in the proposed approach, by

assuming the database is represented as a hierarchy tree, so

future research may apply to a directed acyclic graph database,

which has more than one path to a database item.

2. Developing a tool to monitor and tune the performance

parameters.

3. Repeat the experiments provided in this dissertation with actual

trace from real-world applications.

4. Developing a tool to reduce the locking overhead, when using

the field level locking.

www.manaraa.com

137

5. We believe that the field level locking approach can provide

additional benefits other than facilitating the solution of

increasing concurrency and decreasing deadlock occurrences,

such as Database Security. Another research in this area would

reveal more results.

www.manaraa.com

138

REFERENCES

1. Al-Hamami A. and Al-Annie S., "Concepts and Applications

of Databases Technology", Ithraa Publishing and Distribution,

Jordan, 2008.

2. Averill M. L. and Kelton W. D., "Simulation Modeling and

Analysis", McGraw-Hill, Singapore, 2000.

3. Baum T. and Andrew S., "Modern operating systems",

Pearson Education Asia, New Delhi, 2002.

4. Bell D. and Grimson J., "Distributed database systems",

Addison-Wesley, Wokingham, 1994.

5. Bernstein P. A., Hadzilacos V., and Goodman N. "Concurrency

Control and Recovery in Database Systems", Addison-

Wesley, 1987.

6. Bernstein P. and Newcomer E., "Principles of Transaction

Processing for the Systems Professional", Bentham Press,

2004.

7. Burger A., Kumar V. and Hines M., "Performance of

Multiversion and Distributed Two-Phase locking Concurrency

Control Mechanisms in Distributed Databases", Information

Science, Vol. 96, Issue 12, P129, 24P, 1997.

8. Chandy K. M., Misra J. and Hass L.M., "Distributed Deadlock

detection", ACM Transactions on Computer Systems, Vol. 1,

No. 2, 1983.

9. Coffman, E.G., Elphick M. J., and Shoshani A., "System

Deadlocks", ACM Computing Surveys, Vol. 3, No. 2, PP:67–

78, 1971.

www.manaraa.com

139

10. Croker, A. "Improvements in Database Concurrency

Control with Locking", Journal of Management Information

Systems; Vol. 4 Issue 2, 2001.

11. Elmasri R. and Navathe S.B. "Fundamentals of

Database Systems", 5th edition, Pearson Addison Wesley

(Boston), 2007.

12. Eswaran K. P., Gray J. N., Lorie R. A. and Traiger I. L.,

"The Notions of Consistency and Predicate Locks in a Database

System", ACM archive, New York, Volume 19 , Issue 11, 1976.

13. Galindo-Legaria C. and Rabitti F., "Extending Locking

Techniques to Improve Concurrent Database Access", CNR,

April 1995.

14. Gray J. N., Lorie R. A., Putzolu G. R. and Traiger I. L.,

"Granularity of Locks and Degrees of Consistency in a Shared

Data Base" In IFIP Working Conference on Modeling in

Database Management Systems, pages 365--394, 1976.

15. Holliday J. L. and El-abbadi A., "Distributed Deadlock

Detection", Encyclopedia of Distributed Computing, Kluwer

Academic Publishers, 1987. Available at:

http://www.cse.scu.edu/~jholliday/dd_9_16.htm. Accessed on

21/6/2008.

16. Ingres:

 http://docs.ingres.com/dba/UnderstandingtheLockingSystem

 Accessed on 5/5/2008.

17. Jain R., "The Art of Computer Systems Performance

Analysis", John Wiley, New York, 1991.

http://docs.ingres.com/dba/UnderstandingtheLockingSystem

www.manaraa.com

141

18. Krivokapi N., Kemper A. and Gudes E., "Deadlock

detection in distributed database systems: a new algorithm and

a comparative performance analysis", The VLDB Journal

Volume 8, Issue 2, New York 1999.

19. Ling Y., Chen S. and Chiang C.J., "On Optimal Deadlock

Detection Scheduling", IEEE Transactions on Database, Vol.

55, Issue: 9, PP: 1178 – 1187, 2006.

20. Locking in Microsoft SQL Server:

http://www.mssqlcity.com/Articles/Adm/SQL70Locks.htm#part

_1.Accessed on 5/5/2008.

21. Lomet D. "Private Lock management", Digital

Equipment Corporation, Cambridge Research Lab, 1992.

22. Matthias N. and Matthias J., "Performance Modeling of

Distributed and Replicated Databases", IEEE transactions on

knowledge data engineering, v. 12 n4, p 645-672, July 2000.

23. Menasce D. A., Almeida V. A. F. and Dowdy L. W.,

"Performance by Design, Computer Capacity Planning",

Prentice Hall, New Jersey, 2004.

24. MSDN (Microsoft Developer Network):

 http://msdn.microsoft.com/en-

us/library/ms681205(VS.85).aspx

 Accessed on 19/5/2008.

25. Oracle, Database Concepts:

http://download.oracle.com/docs/cd/B28359_01/server.111/b2
8318/

consist.htm#i5337. Accessed on 20/5/2008.

http://www.mssqlcity.com/Articles/Adm/SQL70Locks.htm%23part_1
http://www.mssqlcity.com/Articles/Adm/SQL70Locks.htm%23part_1
http://msdn.microsoft.com/en-us/library/ms681205(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms681205(VS.85).aspx
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/
http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/

www.manaraa.com

141

26. Oracle, Data Concurrency and Consistency:

http://download-

west.oracle.com/docs/cd/B14117_01/server.101/b10743/consist.

htm

Accessed on 5/5/2008.

27. Oracle Locking Survival Guide:

http://www.akadia.com/services/ora_locks_survival_guide.html

. Accessed on 17/1/2007

28. Ozsu M. T. and Valduriez P., "Principles of distributed

database systems", 2nd edition, Prentice-Hall, Inc, New

jersey1991.

29. Ries R. D. and Stonebraker M.," Effects of locking

granularity in a database management system", ACM Press,

New York, Volume 2, Issue 3, PP: 222 -246, 1977.

30. Roark M. B., Bohler M. and Eldridge B. L. "Embedded

Real-Time and Database: How Do They Fit Together", 1996.

 Ada:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8652

.

 Accessed on 23/6/2008.

31. Rob P. and Coronel C. "Database systems design,

implementation, and management", 7th edition, Thomson,

Canada, 2007.

32. Ryu K. I. and Thomasian A., "Analysis of database

performance with dynamic locking", Source Journal of the

ACM, Volume 37 , Issue 3, 1990.

http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10743/consist.htm
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10743/consist.htm
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10743/consist.htm
http://www.akadia.com/services/ora_locks_survival_guide.html
http://www.akadia.com/services/ora_locks_survival_guide.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8652
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8652

www.manaraa.com

142

33. Silberschatz A., Korth H.F. and Sudarshan S. "Database

System Concepts", 5th edition, McGraw-Hill, New York, 2006.

34. Sinha M. K. " Constraints: consistency and integrity",

ACM SIGMOD, Volume 13, Issue 2, New York, 1983.

35. SQL Server Books Online:

 http://msdn.microsoft.com/en-us/library/ms130214.aspx.

 Accessed on 5/5/2008.

36. SQL Server, Reducing SQL Server Deadlocks, Brad

McGehee, 2006, Accessed on 1/5/2008.

37. Sybase, Performance and Tuning: Locking:

 Document ID: DC20021-01-1251-01, Sybase, Inc 2003

38. Thomasian A., and Ryu K., "Performance Analysis of

Two-Phase Locking," IEEE Transactions on Software

Engineering, vol. 17, no. 5, pp. 386-402, May, 1991.

39. Thomasian A., " Concurrency control: methods,

performance, and analysis", Source ACM Computing

Surveys, Volume 30, Issue 1, 1998.

40. Thomasian A., "Two-phase locking performance and its

thrashing behavior", Source ACM Computing Surveys,

Volume 18 , Issue 4, 1993

41. Weikum G. and Vossen G., "Transactional Information

Systems, Theory, Algorithms and the Practice of Concurrency

Control and recovery", Morgan Kaufman Publishers, 2002.

42. Wikipedia Encyclopedia, http:// en.wikipedia.org/wiki/

Banker's algorithm. Accessed on 5/2/2007.

http://msdn.microsoft.com/en-us/library/ms130214.aspx
http://msdn.microsoft.com/en-us/library/ms130214.aspx
http://www.sql-server-performance.com/authors/bradm.aspx
http://www.sql-server-performance.com/authors/bradm.aspx

www.manaraa.com

143

43. Wikipedia Encyclopedia,

http://en.wikipedia.org/wiki/Deadlock. Accessed on 28/6/2007.

44. Wikipedia Encyclopedia:

 http://en.wikipedia.org/wiki/Distributed_transaction_processing

 Accessed on 19/5/2008.

45. Wikipedia, Encyclopedia:

http://en.wikipedia.org/wiki/Edge_chasing.Accessed on

13/7/2007.

46. Wolfson O. "The overhead of locking (and commit)

protocols in distributed databases", Source ACM Transactions

on Database Systems, Volume 12 , Issue 3, New York ,1987.

47. Wu H., Chin W. and Jaffar J., "An efficient distributed

deadlock avoidance algorithm for the AND model", IEEE

Transactions, Volume 28, Issue 1, PP: 18 – 29, Jan 2002.

48. Y. C. Tay, Goodman N. and Suri R., "Locking

performance in centralized databases", ACM Transactions on

Database Systems, Volume 10, Issue 4, 1985.

49. Yeung C., Hung S. and Lam K., "Performance evaluation

of a new distributed deadlock detection algorithm", ACM

SIGMOD, Volume 23, Issue 3, 1994.

http://en.wikipedia.org/wiki/Deadlock.%20Accessed%20on%2028/6/2007
http://en.wikipedia.org/wiki/Distributed_transaction_processing
http://en.wikipedia.org/wiki/Edge_chasing.Accessed%20on%2013/7/2007
http://en.wikipedia.org/wiki/Edge_chasing.Accessed%20on%2013/7/2007

www.manaraa.com

144

Appendices

APPENDIX A

Input and Output Parameters of Simulation Program

In this appendix, the simulation input parameters are listed in

Table A.1 for centralized, and Table A.2 for distributed. The

simulation output parameters are listed in Table A.3.

 Table A.1: Simulation input parameters for centralized database

Parameter Description Value

Num-table Number of tables in a database 20

Min-num-
tuples

Minimum number of tuples in each
table

1

Max-num-
tuples

Maximum number of tuples in each
table

1000,5000

Min-col Minimum number of columns in each
table

1

Max-col Maximum number of columns in
each table

10

Num-trans Number of transactions in the
system

Up to
1000

Min-trans-size Minimum number of operation 1

Max-trans-size Maximum number of operation 20

Queue-length Maximum queue length 10,20

www.manaraa.com

145

 Table A.2: Simulation input parameters for distributed database

The simulation program was implemented in Java programming

technology by using NetBeans IDE Version 6.0.1

(www.netbeans.org). When the program starts, the source packages

opened, then the input parameters with default values is ready to use

after opening the general settings menu. In addition to the parameters

listed in tables A.1 and A.2, the following parameters are also used:

SMULATION_TIME, which used to specify the simulation time

in milliseconds.

Parameter Description Values

Num-site Number of sites 3

DB-num Number of databases in each
site

1

DB-obj Number of database objects for
each site

5000

Rep_deg Degree of replication 0.2

Num-table Number of tables in a database 15

Num-trans Number of transactions in the
system

Up to 500

Min-trans-
size

Minimum number of operation 1

Max-trans-
size

Maximum number of operation 20

Op-mod Operation mode R, RW,
W

Queue-
length

Maximum queue length 20

Time_check Mean time to check a lock 1 ms

Time_set Mean time to set a lock 1 ms

Time_rel Mean time to release a lock 1 ms

Time_acc Mean time to access a data
object

20 – 100
ms

http://www.netbeans.org/

www.manaraa.com

146

TRANSACTION_LOCK_MAX_TRY_COUNT, used for

specifying how many trials the transaction may try before it

aborts, incase of deadlock.

After the simulation finished, the output parameters listed in A.3 are

produced.

Table A.3: Simulation output parameters

Parameter Description

Simulation total time The time needed to complete the
number of transactions specified

Average transaction
execution time

The average execution time
calculated for the transactions
executed within a time period

Total number of
transactions

How many transactions the
simulation executes

Number of completed
transactions

The number of succeeded
transactions

Number of blocked
transactions

The number of transactions
failed due to blocks

Number of deadlocked
transactions

The number of failed
transactions due to deadlock

Transaction ID
The sequence number
generated to each transaction

Arrival Time The system clock time recorded
when the transaction arrives

Start Service The system clock time recorded
when the transaction start
service

End Service The system clock time recorded
when the transaction finished

Waiting Time The time that a transactions
spent in a waiting queue

Execution Time The time that the transaction
spent in execution

Number of Locks How many locks needed for a
transaction to proceed

www.manaraa.com

147

Number of Operations The number of operations
needed for each transaction

Status The status of transaction (Done,
Blocked, or deadlocked)

Mean number of Locks Mean number of locks needed
for group of transactions to
accomplish their task

Mean number of Operations Mean number of operations
needed for a group of
transactions

Mean waiting time Mean or average waiting time
that a group of transactions
spent in a waiting queue

Throughput Number of completed
transactions within a time
interval

Database size Number of database items
generated by the simulation
programs according to the input
parameters

Sites used The number of sites used by
transaction

Operation mode The operation mode for each
transaction

After the simulation runs, two files are produced, the first one is

for each transaction to show its behavior such as the transaction

shows in figure 4.1. The second file is for the transactions running

within a time period, to show the transaction ID, Arrival time, Start

service, End service, Execution time, Waiting time, Number of

operations, Number of locks needed, and the Status.

www.manaraa.com

148

